Graph neural networks and their current applications in bioinformatics

XM Zhang, L Liang, L Liu, MJ Tang - Frontiers in genetics, 2021 - frontiersin.org
Graph neural networks (GNNs), as a branch of deep learning in non-Euclidean space,
perform particularly well in various tasks that process graph structure data. With the rapid …

Explainable artificial intelligence applications in cyber security: State-of-the-art in research

Z Zhang, H Al Hamadi, E Damiani, CY Yeun… - IEEE …, 2022 - ieeexplore.ieee.org
This survey presents a comprehensive review of current literature on Explainable Artificial
Intelligence (XAI) methods for cyber security applications. Due to the rapid development of …

Atomistic line graph neural network for improved materials property predictions

K Choudhary, B DeCost - npj Computational Materials, 2021 - nature.com
Graph neural networks (GNN) have been shown to provide substantial performance
improvements for atomistic material representation and modeling compared with descriptor …

A comprehensive survey on trustworthy graph neural networks: Privacy, robustness, fairness, and explainability

E Dai, T Zhao, H Zhu, J Xu, Z Guo, H Liu, J Tang… - Machine Intelligence …, 2024 - Springer
Graph neural networks (GNNs) have made rapid developments in the recent years. Due to
their great ability in modeling graph-structured data, GNNs are vastly used in various …

Computing graph neural networks: A survey from algorithms to accelerators

S Abadal, A Jain, R Guirado, J López-Alonso… - ACM Computing …, 2021 - dl.acm.org
Graph Neural Networks (GNNs) have exploded onto the machine learning scene in recent
years owing to their capability to model and learn from graph-structured data. Such an ability …

A generalization of vit/mlp-mixer to graphs

X He, B Hooi, T Laurent, A Perold… - International …, 2023 - proceedings.mlr.press
Abstract Graph Neural Networks (GNNs) have shown great potential in the field of graph
representation learning. Standard GNNs define a local message-passing mechanism which …

Graph-based deep learning for medical diagnosis and analysis: past, present and future

D Ahmedt-Aristizabal, MA Armin, S Denman, C Fookes… - Sensors, 2021 - mdpi.com
With the advances of data-driven machine learning research, a wide variety of prediction
problems have been tackled. It has become critical to explore how machine learning and …

Graph neural networks in network neuroscience

A Bessadok, MA Mahjoub… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Noninvasive medical neuroimaging has yielded many discoveries about the brain
connectivity. Several substantial techniques map** morphological, structural and …

MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis

G Wen, P Cao, H Bao, W Yang, T Zheng… - Computers in biology and …, 2022 - Elsevier
Purpose Recently, functional brain networks (FBN) have been used for the classification of
neurological disorders, such as Autism Spectrum Disorders (ASD). Neurological disorder …

Braingb: a benchmark for brain network analysis with graph neural networks

H Cui, W Dai, Y Zhu, X Kan, AAC Gu… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Map** the connectome of the human brain using structural or functional connectivity has
become one of the most pervasive paradigms for neuroimaging analysis. Recently, Graph …