Organosulfur materials for rechargeable batteries: Structure, mechanism, and application

P Sang, Q Chen, DY Wang, W Guo, Y Fu - Chemical Reviews, 2023 - ACS Publications
Lithium-ion batteries have received significant attention over the last decades due to the
wide application of portable electronics and increasing deployment of electric vehicles. In …

Toward practical high‐energy‐density lithium–sulfur pouch cells: a review

ZX Chen, M Zhao, LP Hou, XQ Zhang, BQ Li… - Advanced …, 2022 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density
energy‐storage devices due to their ultrahigh theoretical energy density of 2600 Wh kg− 1 …

Cathode kinetics evaluation in lean-electrolyte lithium–sulfur batteries

ZX Chen, Q Cheng, XY Li, Z Li, YW Song… - Journal of the …, 2023 - ACS Publications
Lithium–sulfur (Li–S) batteries afford great promise on achieving practical high energy
density beyond lithium-ion batteries. Lean-electrolyte conditions constitute the prerequisite …

Machine-learning-assisted design of a binary descriptor to decipher electronic and structural effects on sulfur reduction kinetics

Z Han, R Gao, T Wang, S Tao, Y Jia, Z Lao, M Zhang… - Nature Catalysis, 2023 - nature.com
The catalytic conversion of lithium polysulfides is a promising way to inhibit the shuttling
effect in Li–S batteries. However, the mechanism of such catalytic systems remains unclear …

Electrolyte solutions design for lithium-sulfur batteries

Y Liu, Y Elias, J Meng, D Aurbach, R Zou, D **a… - Joule, 2021 - cell.com
Summary Lithium-sulfur (Li-S) batteries promise high energy density for next-generation
energy storage systems, yet many challenges remain. Li-S batteries follow a conversion …

Lithium–sulfur battery cathode design: tailoring metal‐based nanostructures for robust polysulfide adsorption and catalytic conversion

SF Ng, MYL Lau, WJ Ong - Advanced Materials, 2021 - Wiley Online Library
Abstract Lithium–sulfur (Li‐S) batteries have a high specific energy capacity and density of
1675 mAh g− 1 and 2670 Wh kg− 1, respectively, rendering them among the most promising …

An organodiselenide comediator to facilitate sulfur redox kinetics in lithium–sulfur batteries

M Zhao, X Chen, XY Li, BQ Li, JQ Huang - Advanced Materials, 2021 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries are considered as promising next‐generation energy
storage devices due to their ultrahigh theoretical energy density, where soluble lithium …

Interface Engineering Toward Expedited Li2S Deposition in Lithium–Sulfur Batteries: A Critical Review

J Sun, Y Liu, L Liu, J Bi, S Wang, Z Du, H Du… - Advanced …, 2023 - Wiley Online Library
Lithium–sulfur batteries (LSBs) with superior energy density are among the most promising
candidates of next‐generation energy storage techniques. As the key step contributing to …

Progress and challenges in electrochemical energy storage devices: Fabrication, electrode material, and economic aspects

R Sharma, H Kumar, G Kumar, S Sharma… - Chemical Engineering …, 2023 - Elsevier
Energy storage devices are contributing to reducing CO 2 emissions on the earth's crust.
Lithium-ion batteries are the most commonly used rechargeable batteries in smartphones …

Monodispersed FeS2 Electrocatalyst Anchored to Nitrogen‐Doped Carbon Host for Lithium–Sulfur Batteries

W Sun, S Liu, Y Li, D Wang, Q Guo… - Advanced Functional …, 2022 - Wiley Online Library
Despite their high theoretical energy density, lithium–sulfur (Li–S) batteries are hindered by
practical challenges including sluggish conversion kinetics and shuttle effect of polysulfides …