Deep learning for event-based vision: A comprehensive survey and benchmarks
Event cameras are bio-inspired sensors that capture the per-pixel intensity changes
asynchronously and produce event streams encoding the time, pixel position, and polarity …
asynchronously and produce event streams encoding the time, pixel position, and polarity …
Machine learning based liver disease diagnosis: A systematic review
The computer-based approach is required for the non-invasive detection of chronic liver
diseases that are asymptomatic, progressive, and potentially fatal in nature. In this study, we …
diseases that are asymptomatic, progressive, and potentially fatal in nature. In this study, we …
Deep generalized unfolding networks for image restoration
Deep neural networks (DNN) have achieved great success in image restoration. However,
most DNN methods are designed as a black box, lacking transparency and interpretability …
most DNN methods are designed as a black box, lacking transparency and interpretability …
Hinet: Half instance normalization network for image restoration
In this paper, we explore the role of Instance Normalization in low-level vision tasks.
Specifically, we present a novel block: Half Instance Normalization Block (HIN Block), to …
Specifically, we present a novel block: Half Instance Normalization Block (HIN Block), to …
Multi-stage progressive image restoration
Image restoration tasks demand a complex balance between spatial details and high-level
contextualized information while recovering images. In this paper, we propose a novel …
contextualized information while recovering images. In this paper, we propose a novel …
Deep image deblurring: A survey
Image deblurring is a classic problem in low-level computer vision with the aim to recover a
sharp image from a blurred input image. Advances in deep learning have led to significant …
sharp image from a blurred input image. Advances in deep learning have led to significant …
Blindly assess image quality in the wild guided by a self-adaptive hyper network
Blind image quality assessment (BIQA) for authentically distorted images has always been a
challenging problem, since images captured in the wild include varies contents and diverse …
challenging problem, since images captured in the wild include varies contents and diverse …
Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better
We present a new end-to-end generative adversarial network (GAN) for single image motion
deblurring, named DeblurGAN-V2, which considerably boosts state-of-the-art deblurring …
deblurring, named DeblurGAN-V2, which considerably boosts state-of-the-art deblurring …
Spatially-adaptive image restoration using distortion-guided networks
We present a general learning-based solution for restoring images suffering from spatially-
varying degradations. Prior approaches are typically degradation-specific and employ the …
varying degradations. Prior approaches are typically degradation-specific and employ the …
Toward real-world single image super-resolution: A new benchmark and a new model
Most of the existing learning-based single image super-resolution (SISR) methods are
trained and evaluated on simulated datasets, where the low-resolution (LR) images are …
trained and evaluated on simulated datasets, where the low-resolution (LR) images are …