Transformers as neural operators for solutions of differential equations with finite regularity

B Shih, A Peyvan, Z Zhang, GE Karniadakis - Computer Methods in Applied …, 2025 - Elsevier
Neural operator learning models have emerged as very effective surrogates in data-driven
methods for partial differential equations (PDEs) across different applications from …

Newton Informed Neural Operator for Solving Nonlinear Partial Differential Equations

W Hao, X Liu, Y Yang - The Thirty-eighth Annual Conference on …, 2025 - openreview.net
Solving nonlinear partial differential equations (PDEs) with multiple solutions is essential in
various fields, including physics, biology, and engineering. However, traditional numerical …

Dual-branch neural operator for enhanced out-of-distribution generalization

J Li, M Yang - Engineering Analysis with Boundary Elements, 2025 - Elsevier
Neural operators, which learn map**s between function spaces, offer an efficient
alternative for solving partial differential equations. However, their generalization to out-of …

CaFA: Global Weather Forecasting with Factorized Attention on Sphere

Z Li, A Zhou, S Patil, AB Farimani - arxiv preprint arxiv:2405.07395, 2024 - arxiv.org
Accurate weather forecasting is crucial in various sectors, impacting decision-making
processes and societal events. Data-driven approaches based on machine learning models …

Modeling Multivariable High-resolution 3D Urban Microclimate Using Localized Fourier Neural Operator

S Qin, D Zhan, D Geng, W Peng, G Tian, Y Shi… - arxiv preprint arxiv …, 2024 - arxiv.org
Accurate urban microclimate analysis with wind velocity and temperature is vital for energy-
efficient urban planning, supporting carbon reduction, enhancing public health and comfort …