Low-rank and sparse representation for hyperspectral image processing: A review

J Peng, W Sun, HC Li, W Li, X Meng… - IEEE Geoscience and …, 2021 - ieeexplore.ieee.org
Combining rich spectral and spatial information, a hyperspectral image (HSI) can provide a
more comprehensive characterization of the Earth's surface. To better exploit HSIs, a large …

Spectral super-resolution meets deep learning: Achievements and challenges

J He, Q Yuan, J Li, Y **ao, D Liu, H Shen, L Zhang - Information Fusion, 2023 - Elsevier
Spectral super-resolution (sSR) is a very important technique to obtain hyperspectral images
from only RGB images, which can effectively overcome the high acquisition cost and low …

Graph information aggregation cross-domain few-shot learning for hyperspectral image classification

Y Zhang, W Li, M Zhang, S Wang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Most domain adaptation (DA) methods in cross-scene hyperspectral image classification
focus on cases where source data (SD) and target data (TD) with the same classes are …

Enhanced autoencoders with attention-embedded degradation learning for unsupervised hyperspectral image super-resolution

L Gao, J Li, K Zheng, X Jia - IEEE Transactions on Geoscience …, 2023 - ieeexplore.ieee.org
Recently, unmixing-based networks have shown significant potential in unsupervised
multispectral-aided hyperspectral image super-resolution (MS-aided HS-SR) task …

Model-informed multi-stage unsupervised network for hyperspectral image super-resolution

J Li, K Zheng, L Gao, L Ni, M Huang… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
By fusing a low-resolution hyperspectral image (LrMSI) with an auxiliary high-resolution
multispectral image (HrMSI), hyperspectral image super-resolution (HISR) can generate a …

Multiscale spatial–spectral transformer network for hyperspectral and multispectral image fusion

S Jia, Z Min, X Fu - Information Fusion, 2023 - Elsevier
Fusing hyperspectral images (HSIs) and multispectral images (MSIs) is an economic and
feasible way to obtain images with both high spectral resolution and spatial resolution. Due …

GuidedNet: A general CNN fusion framework via high-resolution guidance for hyperspectral image super-resolution

R Ran, LJ Deng, TX Jiang, JF Hu… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
Hyperspectral image super-resolution (HISR) is about fusing a low-resolution hyperspectral
image (LR-HSI) and a high-resolution multispectral image (HR-MSI) to generate a high …

Zero-shot hyperspectral sharpening

R Dian, A Guo, S Li - IEEE Transactions on Pattern Analysis …, 2023 - ieeexplore.ieee.org
Fusing hyperspectral images (HSIs) with multispectral images (MSIs) of higher spatial
resolution has become an effective way to sharpen HSIs. Recently, deep convolutional …

Learning tensor low-rank representation for hyperspectral anomaly detection

M Wang, Q Wang, D Hong, SK Roy… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Recently, low-rank representation (LRR) methods have been widely applied for
hyperspectral anomaly detection, due to their potentials in separating the backgrounds and …

Interpretable hyperspectral artificial intelligence: When nonconvex modeling meets hyperspectral remote sensing

D Hong, W He, N Yokoya, J Yao, L Gao… - … and Remote Sensing …, 2021 - ieeexplore.ieee.org
Hyperspectral (HS) imaging, also known as image spectrometry, is a landmark technique in
geoscience and remote sensing (RS). In the past decade, enormous efforts have been made …