Recent advances and clinical applications of deep learning in medical image analysis

X Chen, X Wang, K Zhang, KM Fung, TC Thai… - Medical image …, 2022 - Elsevier
Deep learning has received extensive research interest in develo** new medical image
processing algorithms, and deep learning based models have been remarkably successful …

[HTML][HTML] A review of uncertainty quantification in deep learning: Techniques, applications and challenges

M Abdar, F Pourpanah, S Hussain, D Rezazadegan… - Information fusion, 2021 - Elsevier
Uncertainty quantification (UQ) methods play a pivotal role in reducing the impact of
uncertainties during both optimization and decision making processes. They have been …

Ambiguous medical image segmentation using diffusion models

A Rahman, JMJ Valanarasu… - Proceedings of the …, 2023 - openaccess.thecvf.com
Collective insights from a group of experts have always proven to outperform an individual's
best diagnostic for clinical tasks. For the task of medical image segmentation, existing …

Transmorph: Transformer for unsupervised medical image registration

J Chen, EC Frey, Y He, WP Segars, Y Li, Y Du - Medical image analysis, 2022 - Elsevier
In the last decade, convolutional neural networks (ConvNets) have been a major focus of
research in medical image analysis. However, the performances of ConvNets may be limited …

A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises

SK Zhou, H Greenspan, C Davatzikos… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Since its renaissance, deep learning has been widely used in various medical imaging tasks
and has achieved remarkable success in many medical imaging applications, thereby …

[HTML][HTML] Application of uncertainty quantification to artificial intelligence in healthcare: A review of last decade (2013–2023)

S Seoni, V Jahmunah, M Salvi, PD Barua… - Computers in Biology …, 2023 - Elsevier
Uncertainty estimation in healthcare involves quantifying and understanding the inherent
uncertainty or variability associated with medical predictions, diagnoses, and treatment …

Uncertainty inspired underwater image enhancement

Z Fu, W Wang, Y Huang, X Ding, KK Ma - European conference on …, 2022 - Springer
A main challenge faced in the deep learning-based Underwater Image Enhancement (UIE)
is that the ground truth high-quality image is unavailable. Most of the existing methods first …

UC-Net: Uncertainty inspired RGB-D saliency detection via conditional variational autoencoders

J Zhang, DP Fan, Y Dai, S Anwar… - Proceedings of the …, 2020 - openaccess.thecvf.com
In this paper, we propose the first framework (UCNet) to employ uncertainty for RGB-D
saliency detection by learning from the data labeling process. Existing RGB-D saliency …

[HTML][HTML] Volumetric memory network for interactive medical image segmentation

T Zhou, L Li, G Bredell, J Li, J Unkelbach… - Medical Image …, 2023 - Elsevier
Despite recent progress of automatic medical image segmentation techniques, fully
automatic results usually fail to meet clinically acceptable accuracy, thus typically require …

Modality specific U-Net variants for biomedical image segmentation: a survey

NS Punn, S Agarwal - Artificial Intelligence Review, 2022 - Springer
With the advent of advancements in deep learning approaches, such as deep convolution
neural network, residual neural network, adversarial network; U-Net architectures are most …