Graph representation learning in biomedicine and healthcare

MM Li, K Huang, M Zitnik - Nature Biomedical Engineering, 2022 - nature.com
Networks—or graphs—are universal descriptors of systems of interacting elements. In
biomedicine and healthcare, they can represent, for example, molecular interactions …

[HTML][HTML] Transformers in medical image analysis

K He, C Gan, Z Li, I Rekik, Z Yin, W Ji, Y Gao, Q Wang… - Intelligent …, 2023 - Elsevier
Transformers have dominated the field of natural language processing and have recently
made an impact in the area of computer vision. In the field of medical image analysis …

A survey of machine unlearning

TT Nguyen, TT Huynh, Z Ren, PL Nguyen… - arxiv preprint arxiv …, 2022 - arxiv.org
Today, computer systems hold large amounts of personal data. Yet while such an
abundance of data allows breakthroughs in artificial intelligence, and especially machine …

A comprehensive survey on deep graph representation learning

W Ju, Z Fang, Y Gu, Z Liu, Q Long, Z Qiao, Y Qin… - Neural Networks, 2024 - Elsevier
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …

A knowledge graph to interpret clinical proteomics data

A Santos, AR Colaço, AB Nielsen, L Niu… - Nature …, 2022 - nature.com
Implementing precision medicine hinges on the integration of omics data, such as
proteomics, into the clinical decision-making process, but the quantity and diversity of …

A survey on hypergraph representation learning

A Antelmi, G Cordasco, M Polato, V Scarano… - ACM Computing …, 2023 - dl.acm.org
Hypergraphs have attracted increasing attention in recent years thanks to their flexibility in
naturally modeling a broad range of systems where high-order relationships exist among …

A survey on graph representation learning methods

S Khoshraftar, A An - ACM Transactions on Intelligent Systems and …, 2024 - dl.acm.org
Graph representation learning has been a very active research area in recent years. The
goal of graph representation learning is to generate graph representation vectors that …

Graph learning for combinatorial optimization: a survey of state-of-the-art

Y Peng, B Choi, J Xu - Data Science and Engineering, 2021 - Springer
Graphs have been widely used to represent complex data in many applications, such as e-
commerce, social networks, and bioinformatics. Efficient and effective analysis of graph data …

A survey on malware detection with graph representation learning

T Bilot, N El Madhoun, K Al Agha, A Zouaoui - ACM Computing Surveys, 2024 - dl.acm.org
Malware detection has become a major concern due to the increasing number and
complexity of malware. Traditional detection methods based on signatures and heuristics …

Controllable Data Generation by Deep Learning: A Review

S Wang, Y Du, X Guo, B Pan, Z Qin, L Zhao - ACM Computing Surveys, 2024 - dl.acm.org
Designing and generating new data under targeted properties has been attracting various
critical applications such as molecule design, image editing and speech synthesis …