Generative models as an emerging paradigm in the chemical sciences
Traditional computational approaches to design chemical species are limited by the need to
compute properties for a vast number of candidates, eg, by discriminative modeling …
compute properties for a vast number of candidates, eg, by discriminative modeling …
Self-driving laboratories for chemistry and materials science
Self-driving laboratories (SDLs) promise an accelerated application of the scientific method.
Through the automation of experimental workflows, along with autonomous experimental …
Through the automation of experimental workflows, along with autonomous experimental …
Leveraging large language models for predictive chemistry
Abstract Machine learning has transformed many fields and has recently found applications
in chemistry and materials science. The small datasets commonly found in chemistry …
in chemistry and materials science. The small datasets commonly found in chemistry …
Generative models for molecular discovery: Recent advances and challenges
Abstract Development of new products often relies on the discovery of novel molecules.
While conventional molecular design involves using human expertise to propose …
While conventional molecular design involves using human expertise to propose …
A review of molecular representation in the age of machine learning
Research in chemistry increasingly requires interdisciplinary work prompted by, among
other things, advances in computing, machine learning, and artificial intelligence. Everyone …
other things, advances in computing, machine learning, and artificial intelligence. Everyone …
Data-driven strategies for accelerated materials design
Conspectus The ongoing revolution of the natural sciences by the advent of machine
learning and artificial intelligence sparked significant interest in the material science …
learning and artificial intelligence sparked significant interest in the material science …
Sample efficiency matters: a benchmark for practical molecular optimization
Molecular optimization is a fundamental goal in the chemical sciences and is of central
interest to drug and material design. In recent years, significant progress has been made in …
interest to drug and material design. In recent years, significant progress has been made in …
The role of machine learning in the understanding and design of materials
Develo** algorithmic approaches for the rational design and discovery of materials can
enable us to systematically find novel materials, which can have huge technological and …
enable us to systematically find novel materials, which can have huge technological and …
Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation
The discovery of novel materials and functional molecules can help to solve some of
society's most urgent challenges, ranging from efficient energy harvesting and storage to …
society's most urgent challenges, ranging from efficient energy harvesting and storage to …
SELFIES and the future of molecular string representations
Artificial intelligence (AI) and machine learning (ML) are expanding in popularity for broad
applications to challenging tasks in chemistry and materials science. Examples include the …
applications to challenging tasks in chemistry and materials science. Examples include the …