Generative models as an emerging paradigm in the chemical sciences

DM Anstine, O Isayev - Journal of the American Chemical Society, 2023 - ACS Publications
Traditional computational approaches to design chemical species are limited by the need to
compute properties for a vast number of candidates, eg, by discriminative modeling …

Self-driving laboratories for chemistry and materials science

G Tom, SP Schmid, SG Baird, Y Cao, K Darvish… - Chemical …, 2024 - ACS Publications
Self-driving laboratories (SDLs) promise an accelerated application of the scientific method.
Through the automation of experimental workflows, along with autonomous experimental …

Leveraging large language models for predictive chemistry

KM Jablonka, P Schwaller… - Nature Machine …, 2024 - nature.com
Abstract Machine learning has transformed many fields and has recently found applications
in chemistry and materials science. The small datasets commonly found in chemistry …

Generative models for molecular discovery: Recent advances and challenges

C Bilodeau, W **, T Jaakkola… - Wiley …, 2022 - Wiley Online Library
Abstract Development of new products often relies on the discovery of novel molecules.
While conventional molecular design involves using human expertise to propose …

A review of molecular representation in the age of machine learning

DS Wigh, JM Goodman… - Wiley Interdisciplinary …, 2022 - Wiley Online Library
Research in chemistry increasingly requires interdisciplinary work prompted by, among
other things, advances in computing, machine learning, and artificial intelligence. Everyone …

Data-driven strategies for accelerated materials design

R Pollice, G dos Passos Gomes… - Accounts of Chemical …, 2021 - ACS Publications
Conspectus The ongoing revolution of the natural sciences by the advent of machine
learning and artificial intelligence sparked significant interest in the material science …

Sample efficiency matters: a benchmark for practical molecular optimization

W Gao, T Fu, J Sun, C Coley - Advances in neural …, 2022 - proceedings.neurips.cc
Molecular optimization is a fundamental goal in the chemical sciences and is of central
interest to drug and material design. In recent years, significant progress has been made in …

The role of machine learning in the understanding and design of materials

SM Moosavi, KM Jablonka, B Smit - Journal of the American …, 2020 - ACS Publications
Develo** algorithmic approaches for the rational design and discovery of materials can
enable us to systematically find novel materials, which can have huge technological and …

Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation

M Krenn, F Häse, AK Nigam, P Friederich… - Machine Learning …, 2020 - iopscience.iop.org
The discovery of novel materials and functional molecules can help to solve some of
society's most urgent challenges, ranging from efficient energy harvesting and storage to …

SELFIES and the future of molecular string representations

M Krenn, Q Ai, S Barthel, N Carson, A Frei, NC Frey… - Patterns, 2022 - cell.com
Artificial intelligence (AI) and machine learning (ML) are expanding in popularity for broad
applications to challenging tasks in chemistry and materials science. Examples include the …