Intelligent fault diagnosis of machines with small & imbalanced data: A state-of-the-art review and possible extensions

T Zhang, J Chen, F Li, K Zhang, H Lv, S He, E Xu - ISA transactions, 2022 - Elsevier
The research on intelligent fault diagnosis has yielded remarkable achievements based on
artificial intelligence-related technologies. In engineering scenarios, machines usually work …

Industrial artificial intelligence in industry 4.0-systematic review, challenges and outlook

RS Peres, X Jia, J Lee, K Sun, AW Colombo… - IEEE …, 2020 - ieeexplore.ieee.org
The advent of the Industry 4.0 initiative has made it so that manufacturing environments are
becoming more and more dynamic, connected but also inherently more complex, with …

Machinery fault diagnosis with imbalanced data using deep generative adversarial networks

W Zhang, X Li, XD Jia, H Ma, Z Luo, X Li - Measurement, 2020 - Elsevier
Despite the recent advances of intelligent data-driven fault diagnosis methods on rotating
machines, balanced training data for different machine health conditions are assumed in …

Deep learning for prognostics and health management: State of the art, challenges, and opportunities

B Rezaeianjouybari, Y Shang - Measurement, 2020 - Elsevier
Improving the reliability of engineered systems is a crucial problem in many applications in
various engineering fields, such as aerospace, nuclear energy, and water declination …

Limited data rolling bearing fault diagnosis with few-shot learning

A Zhang, S Li, Y Cui, W Yang, R Dong, J Hu - Ieee Access, 2019 - ieeexplore.ieee.org
This paper focuses on bearing fault diagnosis with limited training data. A major challenge in
fault diagnosis is the infeasibility of obtaining sufficient training samples for every fault type …

A systematic review on imbalanced learning methods in intelligent fault diagnosis

Z Ren, T Lin, K Feng, Y Zhu, Z Liu… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
The theoretical developments of data-driven fault diagnosis methods have yielded fruitful
achievements and significantly benefited industry practices. However, most methods are …

An intelligent fault diagnosis model based on deep neural network for few-shot fault diagnosis

C Wang, Z Xu - Neurocomputing, 2021 - Elsevier
The most existing deep neural networks (DNN)-based methods for fault diagnosis only focus
on prediction accuracy without considering the limitation of labeled sample size. In practical …

Imbalance fault diagnosis under long-tailed distribution: Challenges, solutions and prospects

Z Chen, J Chen, Y Feng, S Liu, T Zhang… - Knowledge-Based …, 2022 - Elsevier
Intelligent fault diagnosis based on deep learning has yielded remarkable progress for its
strong feature representation capability in recent years. Nevertheless, in engineering …

Diagnosis of interturn short-circuit faults in permanent magnet synchronous motors based on few-shot learning under a federated learning framework

J Zhang, Y Wang, K Zhu, Y Zhang… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
A large amount of labeled data are important to enhance the performance of deep-learning-
based methods in the area of fault diagnosis. Because it is difficult to obtain high-quality …

An interpretable data augmentation scheme for machine fault diagnosis based on a sparsity-constrained generative adversarial network

L Ma, Y Ding, Z Wang, C Wang, J Ma, C Lu - Expert Systems with …, 2021 - Elsevier
Vibration signal-based methods have been widely utilized in machine fault diagnosis.
Usually, a lack of sufficient training data can prevent these methods from achieving …