Gaussian process regression for materials and molecules

VL Deringer, AP Bartók, N Bernstein… - Chemical …, 2021 - ACS Publications
We provide an introduction to Gaussian process regression (GPR) machine-learning
methods in computational materials science and chemistry. The focus of the present review …

Artificial intelligence: A powerful paradigm for scientific research

Y Xu, X Liu, X Cao, C Huang, E Liu, S Qian, X Liu… - The Innovation, 2021 - cell.com
Artificial intelligence (AI) coupled with promising machine learning (ML) techniques well
known from computer science is broadly affecting many aspects of various fields including …

LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales

AP Thompson, HM Aktulga, R Berger… - Computer Physics …, 2022 - Elsevier
Since the classical molecular dynamics simulator LAMMPS was released as an open source
code in 2004, it has become a widely-used tool for particle-based modeling of materials at …

Scaling deep learning for materials discovery

A Merchant, S Batzner, SS Schoenholz, M Aykol… - Nature, 2023 - nature.com
Novel functional materials enable fundamental breakthroughs across technological
applications from clean energy to information processing,,,,,,,,,–. From microchips to batteries …

MACE: Higher order equivariant message passing neural networks for fast and accurate force fields

I Batatia, DP Kovacs, G Simm… - Advances in Neural …, 2022 - proceedings.neurips.cc
Creating fast and accurate force fields is a long-standing challenge in computational
chemistry and materials science. Recently, Equivariant Message Passing Neural Networks …

Machine learning force fields

OT Unke, S Chmiela, HE Sauceda… - Chemical …, 2021 - ACS Publications
In recent years, the use of machine learning (ML) in computational chemistry has enabled
numerous advances previously out of reach due to the computational complexity of …

Learning local equivariant representations for large-scale atomistic dynamics

A Musaelian, S Batzner, A Johansson, L Sun… - Nature …, 2023 - nature.com
A simultaneously accurate and computationally efficient parametrization of the potential
energy surface of molecules and materials is a long-standing goal in the natural sciences …

A universal graph deep learning interatomic potential for the periodic table

C Chen, SP Ong - Nature Computational Science, 2022 - nature.com
Interatomic potentials (IAPs), which describe the potential energy surface of atoms, are a
fundamental input for atomistic simulations. However, existing IAPs are either fitted to narrow …

Machine learning and the physical sciences

G Carleo, I Cirac, K Cranmer, L Daudet, M Schuld… - Reviews of Modern …, 2019 - APS
Machine learning (ML) encompasses a broad range of algorithms and modeling tools used
for a vast array of data processing tasks, which has entered most scientific disciplines in …

Electrocatalysis in alkaline media and alkaline membrane-based energy technologies

Y Yang, CR Peltier, R Zeng, R Schimmenti, Q Li… - Chemical …, 2022 - ACS Publications
Hydrogen energy-based electrochemical energy conversion technologies offer the promise
of enabling a transition of the global energy landscape from fossil fuels to renewable energy …