Learning skillful medium-range global weather forecasting

R Lam, A Sanchez-Gonzalez, M Willson, P Wirnsberger… - Science, 2023 - science.org
Global medium-range weather forecasting is critical to decision-making across many social
and economic domains. Traditional numerical weather prediction uses increased compute …

Depgraph: Towards any structural pruning

G Fang, X Ma, M Song, MB Mi… - Proceedings of the …, 2023 - openaccess.thecvf.com
Structural pruning enables model acceleration by removing structurally-grouped parameters
from neural networks. However, the parameter-grou** patterns vary widely across …

Exploring the potential of large language models (llms) in learning on graphs

Z Chen, H Mao, H Li, W **, H Wen, X Wei… - ACM SIGKDD …, 2024 - dl.acm.org
Learning on Graphs has attracted immense attention due to its wide real-world applications.
The most popular pipeline for learning on graphs with textual node attributes primarily relies …

The evolution of distributed systems for graph neural networks and their origin in graph processing and deep learning: A survey

J Vatter, R Mayer, HA Jacobsen - ACM Computing Surveys, 2023 - dl.acm.org
Graph neural networks (GNNs) are an emerging research field. This specialized deep
neural network architecture is capable of processing graph structured data and bridges the …

A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection

M **, HY Koh, Q Wen, D Zambon… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Time series are the primary data type used to record dynamic system measurements and
generated in great volume by both physical sensors and online processes (virtual sensors) …

Foundations & trends in multimodal machine learning: Principles, challenges, and open questions

PP Liang, A Zadeh, LP Morency - ACM Computing Surveys, 2024 - dl.acm.org
Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design
computer agents with intelligent capabilities such as understanding, reasoning, and learning …

Graphgpt: Graph instruction tuning for large language models

J Tang, Y Yang, W Wei, L Shi, L Su, S Cheng… - Proceedings of the 47th …, 2024 - dl.acm.org
Graph Neural Networks (GNNs) have evolved to understand graph structures through
recursive exchanges and aggregations among nodes. To enhance robustness, self …

A review of deep learning techniques for speech processing

A Mehrish, N Majumder, R Bharadwaj, R Mihalcea… - Information …, 2023 - Elsevier
The field of speech processing has undergone a transformative shift with the advent of deep
learning. The use of multiple processing layers has enabled the creation of models capable …