Machine learning for predicting epileptic seizures using EEG signals: A review

K Rasheed, A Qayyum, J Qadir… - IEEE reviews in …, 2020 - ieeexplore.ieee.org
With the advancement in artificial intelligence (AI) and machine learning (ML) techniques,
researchers are striving towards employing these techniques for advancing clinical practice …

[HTML][HTML] Mental health monitoring with multimodal sensing and machine learning: A survey

E Garcia-Ceja, M Riegler, T Nordgreen… - Pervasive and Mobile …, 2018 - Elsevier
Personal and ubiquitous sensing technologies such as smartphones have allowed the
continuous collection of data in an unobtrusive manner. Machine learning methods have …

EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces

VJ Lawhern, AJ Solon, NR Waytowich… - Journal of neural …, 2018 - iopscience.iop.org
Objective. Brain–computer interfaces (BCI) enable direct communication with a computer,
using neural activity as the control signal. This neural signal is generally chosen from a …

A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals

ΚΜ Tsiouris, VC Pezoulas, M Zervakis… - Computers in biology …, 2018 - Elsevier
The electroencephalogram (EEG) is the most prominent means to study epilepsy and
capture changes in electrical brain activity that could declare an imminent seizure. In this …

Applying deep learning for epilepsy seizure detection and brain map** visualization

MS Hossain, SU Amin, M Alsulaiman… - ACM Transactions on …, 2019 - dl.acm.org
Deep Convolutional Neural Network (CNN) has achieved remarkable results in computer
vision tasks for end-to-end learning. We evaluate here the power of a deep CNN to learn …

Forecasting seizure risk in adults with focal epilepsy: a development and validation study

T Proix, W Truccolo, MG Leguia, TK Tcheng… - The Lancet …, 2021 - thelancet.com
Background People with epilepsy are burdened with the apparent unpredictability of
seizures. In the past decade, converging evidence from studies using chronic EEG (cEEG) …

Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study

MJ Cook, TJ O'Brien, SF Berkovic, M Murphy… - The Lancet …, 2013 - thelancet.com
Background Seizure prediction would be clinically useful in patients with epilepsy and could
improve safety, increase independence, and allow acute treatment. We did a multicentre …

EEG-based seizure prediction via Transformer guided CNN

C Li, X Huang, R Song, R Qian, X Liu, X Chen - Measurement, 2022 - Elsevier
Recently, most seizure prediction methods mainly utilize pure CNN or Transformer model,
which cannot extract local and global features simultaneously. To this end, we propose an …

Epileptic seizures prediction using deep learning techniques

SM Usman, S Khalid, MH Aslam - Ieee Access, 2020 - ieeexplore.ieee.org
Epilepsy is a very common neurological disease that has affected more than 65 million
people worldwide. In more than 30% of the cases, people affected by this disease cannot be …

Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal

B Hosseinifard, MH Moradi, R Rostami - Computer methods and programs …, 2013 - Elsevier
Diagnosing depression in the early curable stages is very important and may even save the
life of a patient. In this paper, we study nonlinear analysis of EEG signal for discriminating …