Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A survey of contextual optimization methods for decision-making under uncertainty
Recently there has been a surge of interest in operations research (OR) and the machine
learning (ML) community in combining prediction algorithms and optimization techniques to …
learning (ML) community in combining prediction algorithms and optimization techniques to …
Decision-focused learning: Foundations, state of the art, benchmark and future opportunities
Decision-focused learning (DFL) is an emerging paradigm that integrates machine learning
(ML) and constrained optimization to enhance decision quality by training ML models in an …
(ML) and constrained optimization to enhance decision quality by training ML models in an …
Sdfusion: Multimodal 3d shape completion, reconstruction, and generation
In this work, we present a novel framework built to simplify 3D asset generation for amateur
users. To enable interactive generation, our method supports a variety of input modalities …
users. To enable interactive generation, our method supports a variety of input modalities …
Safe control with learned certificates: A survey of neural lyapunov, barrier, and contraction methods for robotics and control
Learning-enabled control systems have demonstrated impressive empirical performance on
challenging control problems in robotics, but this performance comes at the cost of reduced …
challenging control problems in robotics, but this performance comes at the cost of reduced …
On neural differential equations
P Kidger - arxiv preprint arxiv:2202.02435, 2022 - arxiv.org
The conjoining of dynamical systems and deep learning has become a topic of great
interest. In particular, neural differential equations (NDEs) demonstrate that neural networks …
interest. In particular, neural differential equations (NDEs) demonstrate that neural networks …
Raft: Recurrent all-pairs field transforms for optical flow
Z Teed, J Deng - Computer Vision–ECCV 2020: 16th European …, 2020 - Springer
Abstract We introduce Recurrent All-Pairs Field Transforms (RAFT), a new deep network
architecture for optical flow. RAFT extracts per-pixel features, builds multi-scale 4D …
architecture for optical flow. RAFT extracts per-pixel features, builds multi-scale 4D …
Efficient and modular implicit differentiation
Automatic differentiation (autodiff) has revolutionized machine learning. Itallows to express
complex computations by composing elementary ones in creativeways and removes the …
complex computations by composing elementary ones in creativeways and removes the …
Model-based deep learning: On the intersection of deep learning and optimization
Decision making algorithms are used in a multitude of different applications. Conventional
approaches for designing decision algorithms employ principled and simplified modelling …
approaches for designing decision algorithms employ principled and simplified modelling …
Theseus: A library for differentiable nonlinear optimization
We present Theseus, an efficient application-agnostic open source library for differentiable
nonlinear least squares (DNLS) optimization built on PyTorch, providing a common …
nonlinear least squares (DNLS) optimization built on PyTorch, providing a common …
Graph neural networks for scalable radio resource management: Architecture design and theoretical analysis
Deep learning has recently emerged as a disruptive technology to solve challenging radio
resource management problems in wireless networks. However, the neural network …
resource management problems in wireless networks. However, the neural network …