A survey on federated learning for resource-constrained IoT devices
Federated learning (FL) is a distributed machine learning strategy that generates a global
model by learning from multiple decentralized edge clients. FL enables on-device training …
model by learning from multiple decentralized edge clients. FL enables on-device training …
Tinyml meets iot: A comprehensive survey
L Dutta, S Bharali - Internet of Things, 2021 - Elsevier
The rapid growth in miniaturization of low-power embedded devices and advancement in
the optimization of machine learning (ML) algorithms have opened up a new prospect of the …
the optimization of machine learning (ML) algorithms have opened up a new prospect of the …
On-device training under 256kb memory
On-device training enables the model to adapt to new data collected from the sensors by
fine-tuning a pre-trained model. Users can benefit from customized AI models without having …
fine-tuning a pre-trained model. Users can benefit from customized AI models without having …
A survey of quantization methods for efficient neural network inference
This chapter provides approaches to the problem of quantizing the numerical values in deep
Neural Network computations, covering the advantages/disadvantages of current methods …
Neural Network computations, covering the advantages/disadvantages of current methods …
Mcunet: Tiny deep learning on iot devices
Abstract Machine learning on tiny IoT devices based on microcontroller units (MCU) is
appealing but challenging: the memory of microcontrollers is 2-3 orders of magnitude …
appealing but challenging: the memory of microcontrollers is 2-3 orders of magnitude …
I-bert: Integer-only bert quantization
Transformer based models, like BERT and RoBERTa, have achieved state-of-the-art results
in many Natural Language Processing tasks. However, their memory footprint, inference …
in many Natural Language Processing tasks. However, their memory footprint, inference …
Memory-efficient patch-based inference for tiny deep learning
Tiny deep learning on microcontroller units (MCUs) is challenging due to the limited memory
size. We find that the memory bottleneck is due to the imbalanced memory distribution in …
size. We find that the memory bottleneck is due to the imbalanced memory distribution in …
Machine learning for microcontroller-class hardware: A review
The advancements in machine learning (ML) opened a new opportunity to bring intelligence
to the low-end Internet-of-Things (IoT) nodes, such as microcontrollers. Conventional ML …
to the low-end Internet-of-Things (IoT) nodes, such as microcontrollers. Conventional ML …
Efficient acceleration of deep learning inference on resource-constrained edge devices: A review
Successful integration of deep neural networks (DNNs) or deep learning (DL) has resulted
in breakthroughs in many areas. However, deploying these highly accurate models for data …
in breakthroughs in many areas. However, deploying these highly accurate models for data …
TinyML for ultra-low power AI and large scale IoT deployments: A systematic review
The rapid emergence of low-power embedded devices and modern machine learning (ML)
algorithms has created a new Internet of Things (IoT) era where lightweight ML frameworks …
algorithms has created a new Internet of Things (IoT) era where lightweight ML frameworks …