Low-rank and sparse representation for hyperspectral image processing: A review

J Peng, W Sun, HC Li, W Li, X Meng… - IEEE Geoscience and …, 2021 - ieeexplore.ieee.org
Combining rich spectral and spatial information, a hyperspectral image (HSI) can provide a
more comprehensive characterization of the Earth's surface. To better exploit HSIs, a large …

Hyperspectral anomaly detection based on machine learning: An overview

Y Xu, L Zhang, B Du, L Zhang - IEEE Journal of Selected Topics …, 2022 - ieeexplore.ieee.org
Hyperspectral anomaly detection (HAD) is an important hyperspectral image application.
HAD can find pixels with anomalous spectral signatures compared with their neighbor …

LRR-Net: An interpretable deep unfolding network for hyperspectral anomaly detection

C Li, B Zhang, D Hong, J Yao… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Considerable endeavors have been expended toward enhancing the representation
performance for hyperspectral anomaly detection (HAD) through physical model-based …

BS3LNet: A New Blind-Spot Self-Supervised Learning Network for Hyperspectral Anomaly Detection

L Gao, D Wang, L Zhuang, X Sun… - … on Geoscience and …, 2023 - ieeexplore.ieee.org
Recent years have witnessed the flourishing of deep learning-based methods in
hyperspectral anomaly detection (HAD). However, the lack of available supervision …

Hyperspectral anomaly detection: A survey

H Su, Z Wu, H Zhang, Q Du - IEEE Geoscience and Remote …, 2021 - ieeexplore.ieee.org
Hyperspectral imagery can obtain hundreds of narrow spectral bands of ground objects. The
abundant and detailed spectral information offers a unique diagnostic identification ability for …

Learning tensor low-rank representation for hyperspectral anomaly detection

M Wang, Q Wang, D Hong, SK Roy… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Recently, low-rank representation (LRR) methods have been widely applied for
hyperspectral anomaly detection, due to their potentials in separating the backgrounds and …

Auto-AD: Autonomous hyperspectral anomaly detection network based on fully convolutional autoencoder

S Wang, X Wang, L Zhang… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Hyperspectral anomaly detection is aimed at detecting observations that differ from their
surroundings, and is an active area of research in hyperspectral image processing …

Siamese transformer network for hyperspectral image target detection

W Rao, L Gao, Y Qu, X Sun, B Zhang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Hyperspectral target detection can be described as locating targets of interest within a
hyperspectral image based on prior information of targets. The complexity of actual scenes …

Hyperspectral anomaly detection with robust graph autoencoders

G Fan, Y Ma, X Mei, F Fan, J Huang… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Anomaly detection of hyperspectral data has been gaining particular attention for its ability in
detecting targets in an unsupervised manner. Autoencoder (AE), together with its variants …

Prior-based tensor approximation for anomaly detection in hyperspectral imagery

L Li, W Li, Y Qu, C Zhao, R Tao… - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
The key to hyperspectral anomaly detection is to effectively distinguish anomalies from the
background, especially in the case that background is complex and anomalies are weak …