Causal inference in recommender systems: A survey and future directions
Recommender systems have become crucial in information filtering nowadays. Existing
recommender systems extract user preferences based on the correlation in data, such as …
recommender systems extract user preferences based on the correlation in data, such as …
Edge-cloud polarization and collaboration: A comprehensive survey for ai
Influenced by the great success of deep learning via cloud computing and the rapid
development of edge chips, research in artificial intelligence (AI) has shifted to both of the …
development of edge chips, research in artificial intelligence (AI) has shifted to both of the …
Filter-enhanced MLP is all you need for sequential recommendation
Recently, deep neural networks such as RNN, CNN and Transformer have been applied in
the task of sequential recommendation, which aims to capture the dynamic preference …
the task of sequential recommendation, which aims to capture the dynamic preference …
Llmrec: Large language models with graph augmentation for recommendation
The problem of data sparsity has long been a challenge in recommendation systems, and
previous studies have attempted to address this issue by incorporating side information …
previous studies have attempted to address this issue by incorporating side information …
Debiased contrastive learning for sequential recommendation
Current sequential recommender systems are proposed to tackle the dynamic user
preference learning with various neural techniques, such as Transformer and Graph Neural …
preference learning with various neural techniques, such as Transformer and Graph Neural …
Document-level relation extraction as semantic segmentation
Document-level relation extraction aims to extract relations among multiple entity pairs from
a document. Previously proposed graph-based or transformer-based models utilize the …
a document. Previously proposed graph-based or transformer-based models utilize the …
RecBole 2.0: towards a more up-to-date recommendation library
In order to support the study of recent advances in recommender systems, this paper
presents an extended recommendation library consisting of eight packages for up-to-date …
presents an extended recommendation library consisting of eight packages for up-to-date …
Causal representation learning for out-of-distribution recommendation
Modern recommender systems learn user representations from historical interactions, which
suffer from the problem of user feature shifts, such as an income increase. Historical …
suffer from the problem of user feature shifts, such as an income increase. Historical …
Winner: Weakly-supervised hierarchical decomposition and alignment for spatio-temporal video grounding
Spatio-temporal video grounding aims to localize the aligned visual tube corresponding to a
language query. Existing techniques achieve such alignment by exploiting dense boundary …
language query. Existing techniques achieve such alignment by exploiting dense boundary …
Compositional temporal grounding with structured variational cross-graph correspondence learning
Temporal grounding in videos aims to localize one target video segment that semantically
corresponds to a given query sentence. Thanks to the semantic diversity of natural language …
corresponds to a given query sentence. Thanks to the semantic diversity of natural language …