A survey of text watermarking in the era of large language models

A Liu, L Pan, Y Lu, J Li, X Hu, X Zhang, L Wen… - ACM Computing …, 2024 - dl.acm.org
Text watermarking algorithms are crucial for protecting the copyright of textual content.
Historically, their capabilities and application scenarios were limited. However, recent …

[HTML][HTML] A survey on text classification algorithms: From text to predictions

A Gasparetto, M Marcuzzo, A Zangari, A Albarelli - Information, 2022 - mdpi.com
In recent years, the exponential growth of digital documents has been met by rapid progress
in text classification techniques. Newly proposed machine learning algorithms leverage the …

Rt-2: Vision-language-action models transfer web knowledge to robotic control

A Brohan, N Brown, J Carbajal, Y Chebotar… - arxiv preprint arxiv …, 2023 - arxiv.org
We study how vision-language models trained on Internet-scale data can be incorporated
directly into end-to-end robotic control to boost generalization and enable emergent …

[HTML][HTML] Rt-2: Vision-language-action models transfer web knowledge to robotic control

B Zitkovich, T Yu, S Xu, P Xu, T **ao… - … on Robot Learning, 2023 - proceedings.mlr.press
We study how vision-language models trained on Internet-scale data can be incorporated
directly into end-to-end robotic control to boost generalization and enable emergent …

Do as i can, not as i say: Grounding language in robotic affordances

M Ahn, A Brohan, N Brown, Y Chebotar… - arxiv preprint arxiv …, 2022 - arxiv.org
Large language models can encode a wealth of semantic knowledge about the world. Such
knowledge could be extremely useful to robots aiming to act upon high-level, temporally …

Q-transformer: Scalable offline reinforcement learning via autoregressive q-functions

Y Chebotar, Q Vuong, K Hausman… - … on Robot Learning, 2023 - proceedings.mlr.press
In this work, we present a scalable reinforcement learning method for training multi-task
policies from large offline datasets that can leverage both human demonstrations and …

Open X-Embodiment: Robotic Learning Datasets and RT-X Models : Open X-Embodiment Collaboration0

A O'Neill, A Rehman, A Maddukuri… - … on Robotics and …, 2024 - ieeexplore.ieee.org
Large, high-capacity models trained on diverse datasets have shown remarkable successes
on efficiently tackling downstream applications. In domains from NLP to Computer Vision …

Medcpt: Contrastive pre-trained transformers with large-scale pubmed search logs for zero-shot biomedical information retrieval

Q **, W Kim, Q Chen, DC Comeau, L Yeganova… - …, 2023 - academic.oup.com
Motivation Information retrieval (IR) is essential in biomedical knowledge acquisition and
clinical decision support. While recent progress has shown that language model encoders …

Mulan: A joint embedding of music audio and natural language

Q Huang, A Jansen, J Lee, R Ganti, JY Li… - arxiv preprint arxiv …, 2022 - arxiv.org
Music tagging and content-based retrieval systems have traditionally been constructed
using pre-defined ontologies covering a rigid set of music attributes or text queries. This …

[SÁCH][B] Pretrained transformers for text ranking: Bert and beyond

J Lin, R Nogueira, A Yates - 2022 - books.google.com
The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in
response to a query. Although the most common formulation of text ranking is search …