Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result

G Barles, S Mirrahimi, B Perthame - 2009 - projecteuclid.org
We study two equations of Lotka-Volterra type that describe the Darwinian evolution of a
population density. In the first model a Laplace term represents the mutations. In the second …

Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity

S Méléard, S Mirrahimi - Communications in Partial Differential …, 2015 - Taylor & Francis
We perform an asymptotic analysis of models of population dynamics with a fractional
Laplacian and local or nonlocal reaction terms. The first part of the paper is devoted to the …

A Hamilton-Jacobi approach to neural field equations

W Tao, WT Li, JW Sun - Journal of Differential Equations, 2025 - Elsevier
This paper explores the long time/large space dynamics of the neural field equation with an
exponentially decaying initial data. By establishing a Harnack type inequality, we derive the …

Unbounded solutions of the nonlocal heat equation

C Brändle, E Chasseigne, R Ferreira - arxiv preprint arxiv:1001.2541, 2010 - arxiv.org
We consider the Cauchy problem posed in the whole space for the following nonlocal heat
equation: u_t= J* uu, where J is a symmetric continuous probability density. Depending on …

Large deviation estimates for some nonlocal equations. General bounds and applications

C Brändle, E Chasseigne - Transactions of the American Mathematical …, 2013 - ams.org
Large deviation estimates for the following linear parabolic equation are studied:\[\frac
{\partial u}{\partial t}=\textrm {Tr}\Big (a (x) D^ 2u\Big)+ b (x)\cdot D u+\mathcal {L}[u](x),\] …

[PDF][PDF] Sepideh MIRRAHIMI

JM ROQUEJOFFRE - 2011 - math.univ-toulouse.fr
Cette these porte sur l'étude de phénomenes de concentrations dans certaines équations
intégro-différentielles issues de la dynamique des populations. Nous nous intéressons …

[CITACE][C] Formations en ligne: vous avez été au rendez-vous en 2020!

P Michonneau, P Fleurat‐lessard, A Cantereau… - Notes, 2020

[CITACE][C] Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result

B GUY, M SEPIDEH, P BENOIT - 2009