Tensor decompositions: computations, applications, and challenges

Y Bi, Y Lu, Z Long, C Zhu, Y Liu - Tensors for Data Processing, 2022 - Elsevier
Many classical data processing techniques rely on the representation and computation of
vector and matrix forms, where the vectorization or matricization is often employed on …

Fast and Multi-aspect Mining of Complex Time-stamped Event Streams

K Nakamura, Y Matsubara, K Kawabata… - Proceedings of the …, 2023 - dl.acm.org
Given a huge, online stream of time-evolving events with multiple attributes, such as online
shop** logs:(item, price, brand, time), how can we summarize large, dynamic high-order …

Forecasting day-ahead electricity prices in the integrated single electricity market: addressing volatility with comparative machine learning methods

B Harkin, X Liu - arxiv preprint arxiv:2408.05628, 2024 - arxiv.org
This paper undertakes a comprehensive investigation of electricity price forecasting
methods, focused on the Irish Integrated Single Electricity Market, particularly on changes …

Modeling Dynamic Interactions over Tensor Streams

K Kawabata, Y Matsubara, Y Sakurai - Proceedings of the ACM Web …, 2023 - dl.acm.org
Many web applications, such as search engines and social network services, are
continuously producing a huge number of events with a multi-order tensor form,{count; …

Modeling Time-evolving Causality over Data Streams

N Chihara, Y Matsubara, R Fujiwara… - arxiv preprint arxiv …, 2025 - arxiv.org
Given an extensive, semi-infinite collection of multivariate coevolving data sequences (eg,
sensor/web activity streams) whose observations influence each other, how can we discover …

Gaussian Graphical Model-Based Clustering of Time Series Data

K Obata - Proceedings of the 17th ACM International Conference …, 2024 - dl.acm.org
Time series subsequence clustering is a useful tool for recognizing dynamic changes and
uncovering interesting patterns in time series, and it can also be applied to downstream …

Mining Reaction and Diffusion Dynamics in Social Activities

T Murayama, Y Matsubara, Y Sakurai - Proceedings of the 31st ACM …, 2022 - dl.acm.org
Large quantifies of online user activity data, such as weekly web search volumes, which co-
evolve with the mutual influence of several queries and locations, serve as an important …

[PDF][PDF] Stream Mining Time-evolving Causality in Time Series

N Chihara, Y Matsubara, R Fujiwara, Y Sakurai - 2024 - kdd2024.kdd.org
Given an extensive, semi-infinite collection of multivariate coevolving data sequences,
whose observations influence each other, how can we discover the interpretable time …

複合イベントストリームのための特徴自動抽出

中村航大, 松原靖子, 川畑光希, 梅田裕**… - 情報処理学会論文誌 …, 2021 - ipsj.ixsq.nii.ac.jp
論文抄録 複数の属性 (乗車時間, 乗車エリア, 降車エリア, タクシーの種類, 顧客の属性…)
を含むタクシー乗車データなどに代表される, 時間情報をともなうイベント集合は …

オンライン活動データストリームのための非線形モデル解析

川畑光希, 松原靖子, 本田崇人… - 情報処理学会論文誌 …, 2021 - ipsj.ixsq.nii.ac.jp
論文抄録 Web 検索履歴等に代表される大規模時系列データは, 時刻や地域,
キーワードといった様々な情報とともに収集され, テンソルストリームとして扱うことができる. Web …