Parameter-efficient fine-tuning for large models: A comprehensive survey
Large models represent a groundbreaking advancement in multiple application fields,
enabling remarkable achievements across various tasks. However, their unprecedented …
enabling remarkable achievements across various tasks. However, their unprecedented …
Combining machine learning and computational chemistry for predictive insights into chemical systems
Machine learning models are poised to make a transformative impact on chemical sciences
by dramatically accelerating computational algorithms and amplifying insights available from …
by dramatically accelerating computational algorithms and amplifying insights available from …
A survey of uncertainty in deep neural networks
Over the last decade, neural networks have reached almost every field of science and
become a crucial part of various real world applications. Due to the increasing spread …
become a crucial part of various real world applications. Due to the increasing spread …
A unifying review of deep and shallow anomaly detection
Deep learning approaches to anomaly detection (AD) have recently improved the state of
the art in detection performance on complex data sets, such as large collections of images or …
the art in detection performance on complex data sets, such as large collections of images or …
Laplace redux-effortless bayesian deep learning
Bayesian formulations of deep learning have been shown to have compelling theoretical
properties and offer practical functional benefits, such as improved predictive uncertainty …
properties and offer practical functional benefits, such as improved predictive uncertainty …
Hands-on Bayesian neural networks—A tutorial for deep learning users
Modern deep learning methods constitute incredibly powerful tools to tackle a myriad of
challenging problems. However, since deep learning methods operate as black boxes, the …
challenging problems. However, since deep learning methods operate as black boxes, the …
Merging models with fisher-weighted averaging
MS Matena, CA Raffel - Advances in Neural Information …, 2022 - proceedings.neurips.cc
Averaging the parameters of models that have the same architecture and initialization can
provide a means of combining their respective capabilities. In this paper, we take the …
provide a means of combining their respective capabilities. In this paper, we take the …
Trusted multi-view classification with dynamic evidential fusion
Existing multi-view classification algorithms focus on promoting accuracy by exploiting
different views, typically integrating them into common representations for follow-up tasks …
different views, typically integrating them into common representations for follow-up tasks …
Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods
E Hüllermeier, W Waegeman - Machine learning, 2021 - Springer
The notion of uncertainty is of major importance in machine learning and constitutes a key
element of machine learning methodology. In line with the statistical tradition, uncertainty …
element of machine learning methodology. In line with the statistical tradition, uncertainty …
A continual learning survey: Defying forgetting in classification tasks
Artificial neural networks thrive in solving the classification problem for a particular rigid task,
acquiring knowledge through generalized learning behaviour from a distinct training phase …
acquiring knowledge through generalized learning behaviour from a distinct training phase …