Algorithmic fairness in artificial intelligence for medicine and healthcare

RJ Chen, JJ Wang, DFK Williamson, TY Chen… - Nature biomedical …, 2023 - nature.com
In healthcare, the development and deployment of insufficiently fair systems of artificial
intelligence (AI) can undermine the delivery of equitable care. Assessments of AI models …

Federated learning for internet of things: A comprehensive survey

DC Nguyen, M Ding, PN Pathirana… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of
intelligent services and applications empowered by artificial intelligence (AI). Traditionally …

Advances and open problems in federated learning

P Kairouz, HB McMahan, B Avent… - … and trends® in …, 2021 - nowpublishers.com
Federated learning (FL) is a machine learning setting where many clients (eg, mobile
devices or whole organizations) collaboratively train a model under the orchestration of a …

Federated learning: Challenges, methods, and future directions

T Li, AK Sahu, A Talwalkar… - IEEE signal processing …, 2020 - ieeexplore.ieee.org
Federated learning involves training statistical models over remote devices or siloed data
centers, such as mobile phones or hospitals, while kee** data localized. Training in …

Federated learning for smart healthcare: A survey

DC Nguyen, QV Pham, PN Pathirana, M Ding… - ACM Computing …, 2022 - dl.acm.org
Recent advances in communication technologies and the Internet-of-Medical-Things (IOMT)
have transformed smart healthcare enabled by artificial intelligence (AI). Traditionally, AI …

Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data

MJ Sheller, B Edwards, GA Reina, J Martin, S Pati… - Scientific reports, 2020 - nature.com
Several studies underscore the potential of deep learning in identifying complex patterns,
leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse …

Scaffold: Stochastic controlled averaging for federated learning

SP Karimireddy, S Kale, M Mohri… - International …, 2020 - proceedings.mlr.press
Federated learning is a key scenario in modern large-scale machine learning where the
data remains distributed over a large number of clients and the task is to learn a centralized …

A review of applications in federated learning

L Li, Y Fan, M Tse, KY Lin - Computers & Industrial Engineering, 2020 - Elsevier
Federated Learning (FL) is a collaboratively decentralized privacy-preserving technology to
overcome challenges of data silos and data sensibility. Exactly what research is carrying the …

Federated learning in mobile edge networks: A comprehensive survey

WYB Lim, NC Luong, DT Hoang, Y Jiao… - … surveys & tutorials, 2020 - ieeexplore.ieee.org
In recent years, mobile devices are equipped with increasingly advanced sensing and
computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up …

[HTML][HTML] The future of digital health with federated learning

N Rieke, J Hancox, W Li, F Milletari, HR Roth… - NPJ digital …, 2020 - nature.com
Data-driven machine learning (ML) has emerged as a promising approach for building
accurate and robust statistical models from medical data, which is collected in huge volumes …