Improving robustness against common corruptions by covariate shift adaptation

S Schneider, E Rusak, L Eck… - Advances in neural …, 2020 - proceedings.neurips.cc
Today's state-of-the-art machine vision models are vulnerable to image corruptions like
blurring or compression artefacts, limiting their performance in many real-world applications …

Source data-absent unsupervised domain adaptation through hypothesis transfer and labeling transfer

J Liang, D Hu, Y Wang, R He… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Unsupervised domain adaptation (UDA) aims to transfer knowledge from a related but
different well-labeled source domain to a new unlabeled target domain. Most existing UDA …

Semi-supervised and unsupervised deep visual learning: A survey

Y Chen, M Mancini, X Zhu… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
State-of-the-art deep learning models are often trained with a large amount of costly labeled
training data. However, requiring exhaustive manual annotations may degrade the model's …

[HTML][HTML] Potential, challenges and future directions for deep learning in prognostics and health management applications

O Fink, Q Wang, M Svensen, P Dersin, WJ Lee… - … Applications of Artificial …, 2020 - Elsevier
Deep learning applications have been thriving over the last decade in many different
domains, including computer vision and natural language understanding. The drivers for the …