Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Machine learning methods for small data challenges in molecular science
Small data are often used in scientific and engineering research due to the presence of
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …
A comprehensive survey on deep graph representation learning
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …
structured data into low-dimensional dense vectors, which is a fundamental task that has …
What can large language models do in chemistry? a comprehensive benchmark on eight tasks
Abstract Large Language Models (LLMs) with strong abilities in natural language
processing tasks have emerged and have been applied in various kinds of areas such as …
processing tasks have emerged and have been applied in various kinds of areas such as …
Deep learning methods for molecular representation and property prediction
Highlights•The deep learning method could effectively represent the molecular structure and
predict molecular property through diversified models.•One, two, and three-dimensional …
predict molecular property through diversified models.•One, two, and three-dimensional …
Artificial intelligence in drug toxicity prediction: recent advances, challenges, and future perspectives
Toxicity prediction is a critical step in the drug discovery process that helps identify and
prioritize compounds with the greatest potential for safe and effective use in humans, while …
prioritize compounds with the greatest potential for safe and effective use in humans, while …
Enhancing activity prediction models in drug discovery with the ability to understand human language
Activity and property prediction models are the central workhorses in drug discovery and
materials sciences, but currently, they have to be trained or fine-tuned for new tasks. Without …
materials sciences, but currently, they have to be trained or fine-tuned for new tasks. Without …
Condensing graphs via one-step gradient matching
As training deep learning models on large dataset takes a lot of time and resources, it is
desired to construct a small synthetic dataset with which we can train deep learning models …
desired to construct a small synthetic dataset with which we can train deep learning models …
Graph rationalization with environment-based augmentations
Rationale is defined as a subset of input features that best explains or supports the
prediction by machine learning models. Rationale identification has improved the …
prediction by machine learning models. Rationale identification has improved the …
Linkless link prediction via relational distillation
Abstract Graph Neural Networks (GNNs) have shown exceptional performance in the task of
link prediction. Despite their effectiveness, the high latency brought by non-trivial …
link prediction. Despite their effectiveness, the high latency brought by non-trivial …
Few-shot molecular property prediction via hierarchically structured learning on relation graphs
This paper studies few-shot molecular property prediction, which is a fundamental problem
in cheminformatics and drug discovery. More recently, graph neural network based model …
in cheminformatics and drug discovery. More recently, graph neural network based model …