Quantum photonics with layered 2D materials
Solid-state quantum devices use quantum entanglement for various quantum technologies,
such as quantum computation, encryption, communication and sensing. Solid-state …
such as quantum computation, encryption, communication and sensing. Solid-state …
Quantum guidelines for solid-state spin defects
Defects with associated electron and nuclear spins in solid-state materials have a long
history relevant to quantum information science that goes back to the first spin echo …
history relevant to quantum information science that goes back to the first spin echo …
[HTML][HTML] Quantum networks based on color centers in diamond
With the ability to transfer and process quantum information, large-scale quantum networks
will enable a suite of fundamentally new applications, from quantum communications to …
will enable a suite of fundamentally new applications, from quantum communications to …
Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence
Optically addressable spin defects in silicon carbide (SiC) are an emerging platform for
quantum information processing compatible with nanofabrication processes and device …
quantum information processing compatible with nanofabrication processes and device …
Colloidal quantum dots as platforms for quantum information science
Colloidal quantum dots (QDs) are nanoscale semiconductor crystals with surface ligands
that enable their dispersion in solvents. Quantum confinement effects facilitate wave function …
that enable their dispersion in solvents. Quantum confinement effects facilitate wave function …
4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics
Optical quantum information processing will require highly efficient photonic circuits to
connect quantum nodes on-chip and across long distances. This entails the efficient …
connect quantum nodes on-chip and across long distances. This entails the efficient …
Semiconductor qubits in practice
In the past decade, semiconducting qubits have made great strides in overcoming
decoherence, improving the prospects for scalability and have become one of the leading …
decoherence, improving the prospects for scalability and have become one of the leading …
Five-second coherence of a single spin with single-shot readout in silicon carbide
An outstanding hurdle for defect spin qubits in silicon carbide (SiC) is single-shot readout, a
deterministic measurement of the quantum state. Here, we demonstrate single-shot readout …
deterministic measurement of the quantum state. Here, we demonstrate single-shot readout …
Material platforms for defect qubits and single-photon emitters
Quantum technology has grown out of quantum information theory and now provides a
valuable tool that researchers from numerous fields can add to their toolbox of research …
valuable tool that researchers from numerous fields can add to their toolbox of research …
Integrated quantum photonics with silicon carbide: challenges and prospects
Optically addressable solid-state spin defects are promising candidates for storing and
manipulating quantum information using their long coherence ground-state manifold; …
manipulating quantum information using their long coherence ground-state manifold; …