A comprehensive survey on design and application of autoencoder in deep learning
Autoencoder is an unsupervised learning model, which can automatically learn data
features from a large number of samples and can act as a dimensionality reduction method …
features from a large number of samples and can act as a dimensionality reduction method …
Deep generative modelling: A comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models
Deep generative models are a class of techniques that train deep neural networks to model
the distribution of training samples. Research has fragmented into various interconnected …
the distribution of training samples. Research has fragmented into various interconnected …
Can deep learning beat numerical weather prediction?
The recent hype about artificial intelligence has sparked renewed interest in applying the
successful deep learning (DL) methods for image recognition, speech recognition, robotics …
successful deep learning (DL) methods for image recognition, speech recognition, robotics …
NVAE: A deep hierarchical variational autoencoder
Normalizing flows, autoregressive models, variational autoencoders (VAEs), and deep
energy-based models are among competing likelihood-based frameworks for deep …
energy-based models are among competing likelihood-based frameworks for deep …
[ЦИТИРОВАНИЕ][C] An introduction to variational autoencoders
An Introduction to Variational Autoencoders Page 1 An Introduction to Variational Autoencoders
Page 2 Other titles in Foundations and Trends R in Machine Learning Computational Optimal …
Page 2 Other titles in Foundations and Trends R in Machine Learning Computational Optimal …
Very deep vaes generalize autoregressive models and can outperform them on images
R Child - ar**s from pixels to a quantized latent representation. The …
Dynamical variational autoencoders: A comprehensive review
Variational autoencoders (VAEs) are powerful deep generative models widely used to
represent high-dimensional complex data through a low-dimensional latent space learned …
represent high-dimensional complex data through a low-dimensional latent space learned …
Neural discrete representation learning
Learning useful representations without supervision remains a key challenge in machine
learning. In this paper, we propose a simple yet powerful generative model that learns such …
learning. In this paper, we propose a simple yet powerful generative model that learns such …