A survey of algorithmic recourse: contrastive explanations and consequential recommendations

AH Karimi, G Barthe, B Schölkopf, I Valera - ACM Computing Surveys, 2022 - dl.acm.org
Machine learning is increasingly used to inform decision making in sensitive situations
where decisions have consequential effects on individuals' lives. In these settings, in …

[PDF][PDF] Counterfactual explanations for machine learning: A review

S Verma, J Dickerson, K Hines - arxiv preprint arxiv …, 2020 - ml-retrospectives.github.io
Abstract Machine learning plays a role in many deployed decision systems, often in ways
that are difficult or impossible to understand by human stakeholders. Explaining, in a human …

Toward causal representation learning

B Schölkopf, F Locatello, S Bauer, NR Ke… - Proceedings of the …, 2021 - ieeexplore.ieee.org
The two fields of machine learning and graphical causality arose and are developed
separately. However, there is, now, cross-pollination and increasing interest in both fields to …

Openxai: Towards a transparent evaluation of model explanations

C Agarwal, S Krishna, E Saxena… - Advances in neural …, 2022 - proceedings.neurips.cc
While several types of post hoc explanation methods have been proposed in recent
literature, there is very little work on systematically benchmarking these methods. Here, we …

[HTML][HTML] Information fusion as an integrative cross-cutting enabler to achieve robust, explainable, and trustworthy medical artificial intelligence

A Holzinger, M Dehmer, F Emmert-Streib, R Cucchiara… - Information …, 2022 - Elsevier
Medical artificial intelligence (AI) systems have been remarkably successful, even
outperforming human performance at certain tasks. There is no doubt that AI is important to …

Counterfactuals and causability in explainable artificial intelligence: Theory, algorithms, and applications

YL Chou, C Moreira, P Bruza, C Ouyang, J Jorge - Information Fusion, 2022 - Elsevier
Deep learning models have achieved high performance across different domains, such as
medical decision-making, autonomous vehicles, decision support systems, among many …

Interpretable and explainable machine learning: a methods‐centric overview with concrete examples

R Marcinkevičs, JE Vogt - Wiley Interdisciplinary Reviews: Data …, 2023 - Wiley Online Library
Interpretability and explainability are crucial for machine learning (ML) and statistical
applications in medicine, economics, law, and natural sciences and form an essential …

Counterfactual explanations and algorithmic recourses for machine learning: A review

S Verma, V Boonsanong, M Hoang, K Hines… - ACM Computing …, 2024 - dl.acm.org
Machine learning plays a role in many deployed decision systems, often in ways that are
difficult or impossible to understand by human stakeholders. Explaining, in a human …

Counterfactual explanations can be manipulated

D Slack, A Hilgard, H Lakkaraju… - Advances in neural …, 2021 - proceedings.neurips.cc
Counterfactual explanations are emerging as an attractive option for providing recourse to
individuals adversely impacted by algorithmic decisions. As they are deployed in critical …

If only we had better counterfactual explanations: Five key deficits to rectify in the evaluation of counterfactual xai techniques

MT Keane, EM Kenny, E Delaney, B Smyth - arxiv preprint arxiv …, 2021 - arxiv.org
In recent years, there has been an explosion of AI research on counterfactual explanations
as a solution to the problem of eXplainable AI (XAI). These explanations seem to offer …