Recent advances in open set recognition: A survey

C Geng, S Huang, S Chen - IEEE transactions on pattern …, 2020 - ieeexplore.ieee.org
In real-world recognition/classification tasks, limited by various objective factors, it is usually
difficult to collect training samples to exhaust all classes when training a recognizer or …

A review on semi-supervised clustering

J Cai, J Hao, H Yang, X Zhao, Y Yang - Information Sciences, 2023 - Elsevier
Abstract Semi-supervised clustering (SSC), a technique integrating semi-supervised
learning and clustering analysis, incorporates the given prior information (eg, class labels …

A semantic loss function for deep learning with symbolic knowledge

J Xu, Z Zhang, T Friedman, Y Liang… - … on machine learning, 2018 - proceedings.mlr.press
This paper develops a novel methodology for using symbolic knowledge in deep learning.
From first principles, we derive a semantic loss function that bridges between neural output …

Data Mining The Text Book

C Aggarwal - 2015 - Springer
This textbook explores the different aspects of data mining from the fundamentals to the
complex data types and their applications, capturing the wide diversity of problem domains …

MLDroid—framework for Android malware detection using machine learning techniques

A Mahindru, AL Sangal - Neural Computing and Applications, 2021 - Springer
This research paper presents MLDroid—a web-based framework—which helps to detect
malware from Android devices. Due to increase in the popularity of Android devices …

Hierarchical density estimates for data clustering, visualization, and outlier detection

RJGB Campello, D Moulavi, A Zimek… - ACM Transactions on …, 2015 - dl.acm.org
An integrated framework for density-based cluster analysis, outlier detection, and data
visualization is introduced in this article. The main module consists of an algorithm to …

Machine learning aided Android malware classification

N Milosevic, A Dehghantanha, KKR Choo - Computers & Electrical …, 2017 - Elsevier
The widespread adoption of Android devices and their capability to access significant
private and confidential information have resulted in these devices being targeted by …

Metric learning: A survey

B Kulis - Foundations and Trends® in Machine Learning, 2013 - nowpublishers.com
The metric learning problem is concerned with learning a distance function tuned to a
particular task, and has been shown to be useful when used in conjunction with nearest …

A survey on metric learning for feature vectors and structured data

A Bellet, A Habrard, M Sebban - arxiv preprint arxiv:1306.6709, 2013 - arxiv.org
The need for appropriate ways to measure the distance or similarity between data is
ubiquitous in machine learning, pattern recognition and data mining, but handcrafting such …

Mining heterogeneous information networks: a structural analysis approach

Y Sun, J Han - ACM SIGKDD explorations newsletter, 2013 - dl.acm.org
Most objects and data in the real world are of multiple types, interconnected, forming
complex, heterogeneous but often semi-structured information networks. However, most …