Snapshot compressive imaging: Theory, algorithms, and applications

X Yuan, DJ Brady… - IEEE Signal Processing …, 2021 - ieeexplore.ieee.org
Capturing high-dimensional (HD) data is a long-term challenge in signal processing and
related fields. Snapshot compressive imaging (SCI) uses a 2D detector to capture HD (≥ …

Quantum machine learning for 6G communication networks: State-of-the-art and vision for the future

SJ Nawaz, SK Sharma, S Wyne, MN Patwary… - IEEE …, 2019 - ieeexplore.ieee.org
The upcoming fifth generation (5G) of wireless networks is expected to lay a foundation of
intelligent networks with the provision of some isolated artificial intelligence (AI) operations …

Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing

V Monga, Y Li, YC Eldar - IEEE Signal Processing Magazine, 2021 - ieeexplore.ieee.org
Deep neural networks provide unprecedented performance gains in many real-world
problems in signal and image processing. Despite these gains, the future development and …

Model-based deep learning

N Shlezinger, J Whang, YC Eldar… - Proceedings of the …, 2023 - ieeexplore.ieee.org
Signal processing, communications, and control have traditionally relied on classical
statistical modeling techniques. Such model-based methods utilize mathematical …

Learning to optimize: A primer and a benchmark

T Chen, X Chen, W Chen, H Heaton, J Liu… - Journal of Machine …, 2022 - jmlr.org
Learning to optimize (L2O) is an emerging approach that leverages machine learning to
develop optimization methods, aiming at reducing the laborious iterations of hand …

Wireless networks design in the era of deep learning: Model-based, AI-based, or both?

A Zappone, M Di Renzo… - IEEE Transactions on …, 2019 - ieeexplore.ieee.org
This paper deals with the use of emerging deep learning techniques in future wireless
communication networks. It will be shown that the data-driven approaches should not …

Interpretable hyperspectral artificial intelligence: When nonconvex modeling meets hyperspectral remote sensing

D Hong, W He, N Yokoya, J Yao, L Gao… - … and Remote Sensing …, 2021 - ieeexplore.ieee.org
Hyperspectral (HS) imaging, also known as image spectrometry, is a landmark technique in
geoscience and remote sensing (RS). In the past decade, enormous efforts have been made …

On the explainability of natural language processing deep models

JE Zini, M Awad - ACM Computing Surveys, 2022 - dl.acm.org
Despite their success, deep networks are used as black-box models with outputs that are not
easily explainable during the learning and the prediction phases. This lack of interpretability …

A survey of recent advances in optimization methods for wireless communications

YF Liu, TH Chang, M Hong, Z Wu… - IEEE Journal on …, 2024 - ieeexplore.ieee.org
Mathematical optimization is now widely regarded as an indispensable modeling and
solution tool for the design of wireless communications systems. While optimization has …

An introduction to deep learning for the physical layer

T O'shea, J Hoydis - IEEE Transactions on Cognitive …, 2017 - ieeexplore.ieee.org
We present and discuss several novel applications of deep learning for the physical layer.
By interpreting a communications system as an autoencoder, we develop a fundamental …