[HTML][HTML] Model aggregation techniques in federated learning: A comprehensive survey
Federated learning (FL) is a distributed machine learning (ML) approach that enables
models to be trained on client devices while ensuring the privacy of user data. Model …
models to be trained on client devices while ensuring the privacy of user data. Model …
Remote patient monitoring using artificial intelligence: Current state, applications, and challenges
The adoption of artificial intelligence (AI) in healthcare is growing rapidly. Remote patient
monitoring (RPM) is one of the common healthcare applications that assist doctors to …
monitoring (RPM) is one of the common healthcare applications that assist doctors to …
Heterogeneous federated learning: State-of-the-art and research challenges
Federated learning (FL) has drawn increasing attention owing to its potential use in large-
scale industrial applications. Existing FL works mainly focus on model homogeneous …
scale industrial applications. Existing FL works mainly focus on model homogeneous …
Federated learning review: Fundamentals, enabling technologies, and future applications
Federated Learning (FL) has been foundational in improving the performance of a wide
range of applications since it was first introduced by Google. Some of the most prominent …
range of applications since it was first introduced by Google. Some of the most prominent …
Edge learning for B5G networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing
To process and transfer large amounts of data in emerging wireless services, it has become
increasingly appealing to exploit distributed data communication and learning. Specifically …
increasingly appealing to exploit distributed data communication and learning. Specifically …
Federated learning for smart healthcare: A survey
Recent advances in communication technologies and the Internet-of-Medical-Things (IOMT)
have transformed smart healthcare enabled by artificial intelligence (AI). Traditionally, AI …
have transformed smart healthcare enabled by artificial intelligence (AI). Traditionally, AI …
Shifting machine learning for healthcare from development to deployment and from models to data
In the past decade, the application of machine learning (ML) to healthcare has helped drive
the automation of physician tasks as well as enhancements in clinical capabilities and …
the automation of physician tasks as well as enhancements in clinical capabilities and …
Federated learning for healthcare: Systematic review and architecture proposal
The use of machine learning (ML) with electronic health records (EHR) is growing in
popularity as a means to extract knowledge that can improve the decision-making process in …
popularity as a means to extract knowledge that can improve the decision-making process in …
Security and privacy on 6g network edge: A survey
To meet the stringent service requirements of 6G applications such as immersive cloud
eXtended Reality (XR), holographic communication, and digital twin, there is no doubt that …
eXtended Reality (XR), holographic communication, and digital twin, there is no doubt that …
[HTML][HTML] Federated learning for secure IoMT-applications in smart healthcare systems: A comprehensive review
Recent developments in the Internet of Things (IoT) and various communication
technologies have reshaped numerous application areas. Nowadays, IoT is assimilated into …
technologies have reshaped numerous application areas. Nowadays, IoT is assimilated into …