Outsourced diffusion sampling: Efficient posterior inference in latent spaces of generative models

S Venkatraman, M Hasan, M Kim, L Scimeca… - arxiv preprint arxiv …, 2025 - arxiv.org
Any well-behaved generative model over a variable $\mathbf {x} $ can be expressed as a
deterministic transformation of an exogenous ('outsourced') Gaussian noise variable …

Single-Step Consistent Diffusion Samplers

P Jutras-Dubé, P Pynadath, R Zhang - arxiv preprint arxiv:2502.07579, 2025 - arxiv.org
Sampling from unnormalized target distributions is a fundamental yet challenging task in
machine learning and statistics. Existing sampling algorithms typically require many iterative …

Complexity Analysis of Normalizing Constant Estimation: from Jarzynski Equality to Annealed Importance Sampling and beyond

W Guo, M Tao, Y Chen - arxiv preprint arxiv:2502.04575, 2025 - arxiv.org
Given an unnormalized probability density $\pi\propto\mathrm {e}^{-V} $, estimating its
normalizing constant $ Z=\int_ {\mathbb {R}^ d}\mathrm {e}^{-V (x)}\mathrm {d} x $ or free …

DIME: Diffusion-Based Maximum Entropy Reinforcement Learning

O Celik, Z Li, D Blessing, G Li, D Palanicek… - arxiv preprint arxiv …, 2025 - arxiv.org
Maximum entropy reinforcement learning (MaxEnt-RL) has become the standard approach
to RL due to its beneficial exploration properties. Traditionally, policies are parameterized …