Algorithmic fairness in artificial intelligence for medicine and healthcare

RJ Chen, JJ Wang, DFK Williamson, TY Chen… - Nature biomedical …, 2023 - nature.com
In healthcare, the development and deployment of insufficiently fair systems of artificial
intelligence (AI) can undermine the delivery of equitable care. Assessments of AI models …

Reporting guideline for the early stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI

B Vasey, M Nagendran, B Campbell, DA Clifton… - bmj, 2022 - bmj.com
A growing number of artificial intelligence (AI)-based clinical decision support systems are
showing promising performance in preclinical, in silico, evaluation, but few have yet …

The limits of fair medical imaging AI in real-world generalization

Y Yang, H Zhang, JW Gichoya, D Katabi… - Nature Medicine, 2024 - nature.com
As artificial intelligence (AI) rapidly approaches human-level performance in medical
imaging, it is crucial that it does not exacerbate or propagate healthcare disparities. Previous …

Real-world data: a brief review of the methods, applications, challenges and opportunities

F Liu, D Panagiotakos - BMC Medical Research Methodology, 2022 - Springer
Background The increased adoption of the internet, social media, wearable devices, e-
health services, and other technology-driven services in medicine and healthcare has led to …

The value of standards for health datasets in artificial intelligence-based applications

A Arora, JE Alderman, J Palmer, S Ganapathi… - Nature Medicine, 2023 - nature.com
Artificial intelligence as a medical device is increasingly being applied to healthcare for
diagnosis, risk stratification and resource allocation. However, a growing body of evidence …

[HTML][HTML] SHIFTing artificial intelligence to be responsible in healthcare: A systematic review

H Siala, Y Wang - Social Science & Medicine, 2022 - Elsevier
A variety of ethical concerns about artificial intelligence (AI) implementation in healthcare
have emerged as AI becomes increasingly applicable and technologically advanced. The …

Machine learning and algorithmic fairness in public and population health

V Mhasawade, Y Zhao, R Chunara - Nature Machine Intelligence, 2021 - nature.com
Until now, much of the work on machine learning and health has focused on processes
inside the hospital or clinic. However, this represents only a narrow set of tasks and …

Friend or foe? Teaming between artificial intelligence and workers with variation in experience

W Wang, G Gao, R Agarwal - Management Science, 2024 - pubsonline.informs.org
As artificial intelligence (AI) applications become more pervasive, it is critical to understand
how knowledge workers with different levels and types of experience can team with AI for …

Accessing artificial intelligence for clinical decision-making

C Giordano, M Brennan, B Mohamed… - Frontiers in digital …, 2021 - frontiersin.org
Advancements in computing and data from the near universal acceptance and
implementation of electronic health records has been formative for the growth of …

Beyond bias and discrimination: redefining the AI ethics principle of fairness in healthcare machine-learning algorithms

B Giovanola, S Tiribelli - AI & society, 2023 - Springer
The increasing implementation of and reliance on machine-learning (ML) algorithms to
perform tasks, deliver services and make decisions in health and healthcare have made the …