Advances in medical image analysis with vision transformers: a comprehensive review
The remarkable performance of the Transformer architecture in natural language processing
has recently also triggered broad interest in Computer Vision. Among other merits …
has recently also triggered broad interest in Computer Vision. Among other merits …
Decentralized federated learning: Fundamentals, state of the art, frameworks, trends, and challenges
In recent years, Federated Learning (FL) has gained relevance in training collaborative
models without sharing sensitive data. Since its birth, Centralized FL (CFL) has been the …
models without sharing sensitive data. Since its birth, Centralized FL (CFL) has been the …
Mm-vet: Evaluating large multimodal models for integrated capabilities
We propose MM-Vet, an evaluation benchmark that examines large multimodal models
(LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing …
(LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing …
The limits of fair medical imaging AI in real-world generalization
As artificial intelligence (AI) rapidly approaches human-level performance in medical
imaging, it is crucial that it does not exacerbate or propagate healthcare disparities. Previous …
imaging, it is crucial that it does not exacerbate or propagate healthcare disparities. Previous …
A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities
Few-shot learning (FSL) has emerged as an effective learning method and shows great
potential. Despite the recent creative works in tackling FSL tasks, learning valid information …
potential. Despite the recent creative works in tackling FSL tasks, learning valid information …
Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations
Artificial intelligence (AI) systems have increasingly achieved expert-level performance in
medical imaging applications. However, there is growing concern that such AI systems may …
medical imaging applications. However, there is growing concern that such AI systems may …
Florence: A new foundation model for computer vision
Automated visual understanding of our diverse and open world demands computer vision
models to generalize well with minimal customization for specific tasks, similar to human …
models to generalize well with minimal customization for specific tasks, similar to human …
On the challenges and perspectives of foundation models for medical image analysis
This article discusses the opportunities, applications and future directions of large-scale
pretrained models, ie, foundation models, which promise to significantly improve the …
pretrained models, ie, foundation models, which promise to significantly improve the …
Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image classification
We introduce MedMNIST v2, a large-scale MNIST-like dataset collection of standardized
biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre …
biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre …
Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging
Abstract Machine-learning models for medical tasks can match or surpass the performance
of clinical experts. However, in settings differing from those of the training dataset, the …
of clinical experts. However, in settings differing from those of the training dataset, the …