Reinforcement learning for combinatorial optimization: A survey

N Mazyavkina, S Sviridov, S Ivanov… - Computers & Operations …, 2021 - Elsevier
Many traditional algorithms for solving combinatorial optimization problems involve using
hand-crafted heuristics that sequentially construct a solution. Such heuristics are designed …

A brief review of portfolio optimization techniques

A Gunjan, S Bhattacharyya - Artificial Intelligence Review, 2023 - Springer
Portfolio optimization has always been a challenging proposition in finance and
management. Portfolio optimization facilitates in selection of portfolios in a volatile market …

Combinatorial optimization and reasoning with graph neural networks

Q Cappart, D Chételat, EB Khalil, A Lodi… - Journal of Machine …, 2023 - jmlr.org
Combinatorial optimization is a well-established area in operations research and computer
science. Until recently, its methods have focused on solving problem instances in isolation …

Neural combinatorial optimization with heavy decoder: Toward large scale generalization

F Luo, X Lin, F Liu, Q Zhang… - Advances in Neural …, 2024 - proceedings.neurips.cc
Neural combinatorial optimization (NCO) is a promising learning-based approach for solving
challenging combinatorial optimization problems without specialized algorithm design by …

Deep Q-learning based reinforcement learning approach for network intrusion detection

H Alavizadeh, H Alavizadeh, J Jang-Jaccard - Computers, 2022 - mdpi.com
The rise of the new generation of cyber threats demands more sophisticated and intelligent
cyber defense solutions equipped with autonomous agents capable of learning to make …

Deep policy dynamic programming for vehicle routing problems

W Kool, H van Hoof, J Gromicho, M Welling - International conference on …, 2022 - Springer
Routing problems are a class of combinatorial problems with many practical applications.
Recently, end-to-end deep learning methods have been proposed to learn approximate …

Network planning with deep reinforcement learning

H Zhu, V Gupta, SS Ahuja, Y Tian, Y Zhang… - Proceedings of the 2021 …, 2021 - dl.acm.org
Network planning is critical to the performance, reliability and cost of web services. This
problem is typically formulated as an Integer Linear Programming (ILP) problem. Today's …

Challenges and opportunities in deep reinforcement learning with graph neural networks: A comprehensive review of algorithms and applications

S Munikoti, D Agarwal, L Das… - IEEE transactions on …, 2023 - ieeexplore.ieee.org
Deep reinforcement learning (DRL) has empowered a variety of artificial intelligence fields,
including pattern recognition, robotics, recommendation systems, and gaming. Similarly …

A review on learning to solve combinatorial optimisation problems in manufacturing

C Zhang, Y Wu, Y Ma, W Song, Z Le… - IET Collaborative …, 2023 - Wiley Online Library
An efficient manufacturing system is key to maintaining a healthy economy today. With the
rapid development of science and technology and the progress of human society, the …

Learning to solve combinatorial optimization problems on real-world graphs in linear time

I Drori, A Kharkar, WR Sickinger, B Kates… - 2020 19th IEEE …, 2020 - ieeexplore.ieee.org
Combinatorial optimization algorithms for graph problems are usually designed afresh for
each new problem with careful attention by an expert to the problem structure. In this work …