A survey on deep learning techniques for image and video semantic segmentation
Image semantic segmentation is more and more being of interest for computer vision and
machine learning researchers. Many applications on the rise need accurate and efficient …
machine learning researchers. Many applications on the rise need accurate and efficient …
Deep learning on 3D point clouds
A point cloud is a set of points defined in a 3D metric space. Point clouds have become one
of the most significant data formats for 3D representation and are gaining increased …
of the most significant data formats for 3D representation and are gaining increased …
Pointnext: Revisiting pointnet++ with improved training and scaling strategies
PointNet++ is one of the most influential neural architectures for point cloud understanding.
Although the accuracy of PointNet++ has been largely surpassed by recent networks such …
Although the accuracy of PointNet++ has been largely surpassed by recent networks such …
Masked autoencoders for point cloud self-supervised learning
As a promising scheme of self-supervised learning, masked autoencoding has significantly
advanced natural language processing and computer vision. Inspired by this, we propose a …
advanced natural language processing and computer vision. Inspired by this, we propose a …
Point-bert: Pre-training 3d point cloud transformers with masked point modeling
We present Point-BERT, a novel paradigm for learning Transformers to generalize the
concept of BERT onto 3D point cloud. Following BERT, we devise a Masked Point Modeling …
concept of BERT onto 3D point cloud. Following BERT, we devise a Masked Point Modeling …
Point-m2ae: multi-scale masked autoencoders for hierarchical point cloud pre-training
Masked Autoencoders (MAE) have shown great potentials in self-supervised pre-training for
language and 2D image transformers. However, it still remains an open question on how to …
language and 2D image transformers. However, it still remains an open question on how to …
Learning 3d representations from 2d pre-trained models via image-to-point masked autoencoders
Pre-training by numerous image data has become de-facto for robust 2D representations. In
contrast, due to the expensive data processing, a paucity of 3D datasets severely hinders …
contrast, due to the expensive data processing, a paucity of 3D datasets severely hinders …
Crosspoint: Self-supervised cross-modal contrastive learning for 3d point cloud understanding
M Afham, I Dissanayake… - Proceedings of the …, 2022 - openaccess.thecvf.com
Manual annotation of large-scale point cloud dataset for varying tasks such as 3D object
classification, segmentation and detection is often laborious owing to the irregular structure …
classification, segmentation and detection is often laborious owing to the irregular structure …
Rethinking network design and local geometry in point cloud: A simple residual MLP framework
Point cloud analysis is challenging due to irregularity and unordered data structure. To
capture the 3D geometries, prior works mainly rely on exploring sophisticated local …
capture the 3D geometries, prior works mainly rely on exploring sophisticated local …
Contrast with reconstruct: Contrastive 3d representation learning guided by generative pretraining
Mainstream 3D representation learning approaches are built upon contrastive or generative
modeling pretext tasks, where great improvements in performance on various downstream …
modeling pretext tasks, where great improvements in performance on various downstream …