Computational optimal transport: With applications to data science

G Peyré, M Cuturi - Foundations and Trends® in Machine …, 2019 - nowpublishers.com
Optimal transport (OT) theory can be informally described using the words of the French
mathematician Gaspard Monge (1746–1818): A worker with a shovel in hand has to move a …

Recent advances in optimal transport for machine learning

EF Montesuma, FMN Mboula… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Recently, Optimal Transport has been proposed as a probabilistic framework in Machine
Learning for comparing and manipulating probability distributions. This is rooted in its rich …

Flow straight and fast: Learning to generate and transfer data with rectified flow

X Liu, C Gong, Q Liu - ar** via input convex neural networks
A Makkuva, A Taghvaei, S Oh… - … Conference on Machine …, 2020 - proceedings.mlr.press
In this paper, we present a novel and principled approach to learn the optimal transport
between two distributions, from samples. Guided by the optimal transport theory, we learn …