[HTML][HTML] Deep learning classifiers for hyperspectral imaging: A review

ME Paoletti, JM Haut, J Plaza, A Plaza - ISPRS Journal of Photogrammetry …, 2019 - Elsevier
Advances in computing technology have fostered the development of new and powerful
deep learning (DL) techniques, which have demonstrated promising results in a wide range …

Low-rank and sparse representation for hyperspectral image processing: A review

J Peng, W Sun, HC Li, W Li, X Meng… - IEEE Geoscience and …, 2021 - ieeexplore.ieee.org
Combining rich spectral and spatial information, a hyperspectral image (HSI) can provide a
more comprehensive characterization of the Earth's surface. To better exploit HSIs, a large …

LRR-Net: An interpretable deep unfolding network for hyperspectral anomaly detection

C Li, B Zhang, D Hong, J Yao… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Considerable endeavors have been expended toward enhancing the representation
performance for hyperspectral anomaly detection (HAD) through physical model-based …

BS3LNet: A New Blind-Spot Self-Supervised Learning Network for Hyperspectral Anomaly Detection

L Gao, D Wang, L Zhuang, X Sun… - … on Geoscience and …, 2023 - ieeexplore.ieee.org
Recent years have witnessed the flourishing of deep learning-based methods in
hyperspectral anomaly detection (HAD). However, the lack of available supervision …

Hyperspectral anomaly detection: A survey

H Su, Z Wu, H Zhang, Q Du - IEEE Geoscience and Remote …, 2021 - ieeexplore.ieee.org
Hyperspectral imagery can obtain hundreds of narrow spectral bands of ground objects. The
abundant and detailed spectral information offers a unique diagnostic identification ability for …

Learning disentangled priors for hyperspectral anomaly detection: A coupling model-driven and data-driven paradigm

C Li, B Zhang, D Hong, X Jia, A Plaza… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Accurately distinguishing between background and anomalous objects within hyperspectral
images poses a significant challenge. The primary obstacle lies in the inadequate modeling …

Learning tensor low-rank representation for hyperspectral anomaly detection

M Wang, Q Wang, D Hong, SK Roy… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Recently, low-rank representation (LRR) methods have been widely applied for
hyperspectral anomaly detection, due to their potentials in separating the backgrounds and …

BockNet: Blind-block reconstruction network with a guard window for hyperspectral anomaly detection

D Wang, L Zhuang, L Gao, X Sun… - … on Geoscience and …, 2023 - ieeexplore.ieee.org
Hyperspectral anomaly detection (HAD) aims to identify anomalous targets that deviate from
the surrounding background in unlabeled hyperspectral images (HSIs). Most existing deep …

Auto-AD: Autonomous hyperspectral anomaly detection network based on fully convolutional autoencoder

S Wang, X Wang, L Zhang… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Hyperspectral anomaly detection is aimed at detecting observations that differ from their
surroundings, and is an active area of research in hyperspectral image processing …

PDBSNet: Pixel-shuffle downsampling blind-spot reconstruction network for hyperspectral anomaly detection

D Wang, L Zhuang, L Gao, X Sun… - … on Geoscience and …, 2023 - ieeexplore.ieee.org
Recent years have witnessed significant advances of deep learning technology in
hyperspectral anomaly detection (HAD). Among these methods, existing unsupervised …