Updated review of advances in microRNAs and complex diseases: taxonomy, trends and challenges of computational models

L Huang, L Zhang, X Chen - Briefings in bioinformatics, 2022 - academic.oup.com
Since the problem proposed in late 2000s, microRNA–disease association (MDA)
predictions have been implemented based on the data fusion paradigm. Integrating diverse …

Fake reviews detection: A survey

R Mohawesh, S Xu, SN Tran, R Ollington… - Ieee …, 2021 - ieeexplore.ieee.org
In e-commerce, user reviews can play a significant role in determining the revenue of an
organisation. Online users rely on reviews before making decisions about any product and …

A survey on semi-supervised learning

JE Van Engelen, HH Hoos - Machine learning, 2020 - Springer
Semi-supervised learning is the branch of machine learning concerned with using labelled
as well as unlabelled data to perform certain learning tasks. Conceptually situated between …

Learning from positive and unlabeled data: A survey

J Bekker, J Davis - Machine Learning, 2020 - Springer
Learning from positive and unlabeled data or PU learning is the setting where a learner only
has access to positive examples and unlabeled data. The assumption is that the unlabeled …

A survey on opinion mining and sentiment analysis: tasks, approaches and applications

K Ravi, V Ravi - Knowledge-based systems, 2015 - Elsevier
With the advent of Web 2.0, people became more eager to express and share their opinions
on web regarding day-to-day activities and global issues as well. Evolution of social media …

Positive-unlabeled learning with non-negative risk estimator

R Kiryo, G Niu, MC Du Plessis… - Advances in neural …, 2017 - proceedings.neurips.cc
From only positive (P) and unlabeled (U) data, a binary classifier could be trained with PU
learning, in which the state of the art is unbiased PU learning. However, if its model is very …

[LIBRO][B] Lifelong machine learning

Z Chen, B Liu - 2018 - books.google.com
Lifelong Machine Learning, Second Edition is an introduction to an advanced machine
learning paradigm that continuously learns by accumulating past knowledge that it then …

[LIBRO][B] An introduction to outlier analysis

CC Aggarwal, CC Aggarwal - 2017 - Springer
Outliers are also referred to as abnormalities, discordants, deviants, or anomalies in the data
mining and statistics literature. In most applications, the data is created by one or more …

[LIBRO][B] Sentiment analysis and opinion mining

B Liu - 2022 - books.google.com
Sentiment analysis and opinion mining is the field of study that analyzes people's opinions,
sentiments, evaluations, attitudes, and emotions from written language. It is one of the most …

One-class classification: taxonomy of study and review of techniques

SS Khan, MG Madden - The Knowledge Engineering Review, 2014 - cambridge.org
One-class classification (OCC) algorithms aim to build classification models when the
negative class is either absent, poorly sampled or not well defined. This unique situation …