Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation

N Tajbakhsh, L Jeyaseelan, Q Li, JN Chiang, Z Wu… - Medical image …, 2020 - Elsevier
The medical imaging literature has witnessed remarkable progress in high-performing
segmentation models based on convolutional neural networks. Despite the new …

Artificial intelligence in radiology

A Hosny, C Parmar, J Quackenbush… - Nature Reviews …, 2018 - nature.com
Artificial intelligence (AI) algorithms, particularly deep learning, have demonstrated
remarkable progress in image-recognition tasks. Methods ranging from convolutional neural …

Deep learning in medical imaging and radiation therapy

B Sahiner, A Pezeshk, LM Hadjiiski, X Wang… - Medical …, 2019 - Wiley Online Library
The goals of this review paper on deep learning (DL) in medical imaging and radiation
therapy are to (a) summarize what has been achieved to date;(b) identify common and …

Measuring the quality of explanations: the system causability scale (SCS) comparing human and machine explanations

A Holzinger, A Carrington, H Müller - KI-Künstliche Intelligenz, 2020 - Springer
Abstract Recent success in Artificial Intelligence (AI) and Machine Learning (ML) allow
problem solving automatically without any human intervention. Autonomous approaches …

Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study

A Hosny, C Parmar, TP Coroller, P Grossmann… - PLoS …, 2018 - journals.plos.org
Background Non-small-cell lung cancer (NSCLC) patients often demonstrate varying clinical
courses and outcomes, even within the same tumor stage. This study explores deep …

A survey on deep learning in medical image analysis

G Litjens, T Kooi, BE Bejnordi, AAA Setio, F Ciompi… - Medical image …, 2017 - Elsevier
Deep learning algorithms, in particular convolutional networks, have rapidly become a
methodology of choice for analyzing medical images. This paper reviews the major deep …

Variability and reproducibility in deep learning for medical image segmentation

F Renard, S Guedria, ND Palma, N Vuillerme - Scientific Reports, 2020 - nature.com
Medical image segmentation is an important tool for current clinical applications. It is the
backbone of numerous clinical diagnosis methods, oncological treatments and computer …

Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation

T Nair, D Precup, DL Arnold, T Arbel - Medical image analysis, 2020 - Elsevier
Deep learning networks have recently been shown to outperform other segmentation
methods on various public, medical-image challenge datasets, particularly on metrics …

Standardized assessment of automatic segmentation of white matter hyperintensities and results of the WMH segmentation challenge

HJ Kuijf, JM Biesbroek, J De Bresser… - IEEE transactions on …, 2019 - ieeexplore.ieee.org
Quantification of cerebral white matter hyperintensities (WMH) of presumed vascular origin
is of key importance in many neurological research studies. Currently, measurements are …

Transfer learning for domain adaptation in mri: Application in brain lesion segmentation

M Ghafoorian, A Mehrtash, T Kapur… - … Image Computing and …, 2017 - Springer
Abstract Magnetic Resonance Imaging (MRI) is widely used in routine clinical diagnosis and
treatment. However, variations in MRI acquisition protocols result in different appearances of …