Fast algorithms via dynamic-oracle matroids

J Blikstad, S Mukhopadhyay, D Nanongkai… - Proceedings of the 55th …, 2023 - dl.acm.org
We initiate the study of matroid problems in a new oracle model called dynamic oracle. Our
algorithms in this model lead to new bounds for some classic problems, and a “unified” …

Adaptive sparsification for matroid intersection

K Quanrud - … on Automata, Languages, and Programming (ICALP …, 2024 - drops.dagstuhl.de
We consider the matroid intersection problem in the independence oracle model. Given two
matroids over n common elements such that the intersection has rank k, our main technique …

Faster exact and approximation algorithms for packing and covering matroids via push-relabel

K Quanrud - Proceedings of the 2024 Annual ACM-SIAM …, 2024 - SIAM
Matroids are a fundamental object of study in combinatorial optimization. Three closely
related and important problems involving matroids are maximizing the size of the union of k …

Breaking O (nr) for matroid intersection

J Blikstad - arxiv preprint arxiv:2105.05673, 2021 - arxiv.org
We present algorithms that break the $\tilde O (nr) $-independence-query bound for the
Matroid Intersection problem for the full range of $ r $; where $ n $ is the size of the ground …

A polynomial lower bound on the number of rounds for parallel submodular function minimization and matroid intersection

D Chakrabarty, Y Chen, S Khanna - SIAM Journal on Computing, 2023 - SIAM
Submodular function minimization (SFM) and matroid intersection are fundamental discrete
optimization problems with applications in many fields. It is well known that both of these can …

Efficient Matroid Intersection via a Batch-Update Auction Algorithm

J Blikstad, TW Tu - 2025 Symposium on Simplicity in Algorithms (SOSA), 2025 - SIAM
Given two matroids M 1 and M 2 over the same n-element ground set, the matroid
intersection problem is to find a largest common independent set, whose size we denote by …

Subquadratic Submodular Maximization with a General Matroid Constraint

Y Kobayashi, T Terao - arxiv preprint arxiv:2405.00359, 2024 - arxiv.org
We consider fast algorithms for monotone submodular maximization with a general matroid
constraint. We present a randomized $(1-1/e-\epsilon) $-approximation algorithm that …

Faster matroid partition algorithms

T Terao - arxiv preprint arxiv:2303.05920, 2023 - arxiv.org
In the matroid partitioning problem, we are given $ k $ matroids $\mathcal {M}
_1=(V,\mathcal {I} _1),\dots,\mathcal {M} _k=(V,\mathcal {I} _k) $ defined over a common …

Subquadratic weighted matroid intersection under rank oracles

TW Tu - arxiv preprint arxiv:2212.00508, 2022 - arxiv.org
Given two matroids $\mathcal {M} _1=(V,\mathcal {I} _1) $ and $\mathcal {M} _2=(V,\mathcal
{I} _2) $ over an $ n $-element integer-weighted ground set $ V $, the weighted matroid …

Deterministic -Approximation of Matroid Intersection using Nearly-Linear Independence-Oracle Queries

T Terao - arxiv preprint arxiv:2410.18820, 2024 - arxiv.org
In the matroid intersection problem, we are given two matroids $\mathcal {M} _1=(V,\mathcal
{I} _1) $ and $\mathcal {M} _2=(V,\mathcal {I} _2) $ defined on the same ground set $ V $ of …