Survey of vulnerabilities in large language models revealed by adversarial attacks

E Shayegani, MAA Mamun, Y Fu, P Zaree… - arxiv preprint arxiv …, 2023 - arxiv.org
Large Language Models (LLMs) are swiftly advancing in architecture and capability, and as
they integrate more deeply into complex systems, the urgency to scrutinize their security …

[HTML][HTML] Generative AI for visualization: State of the art and future directions

Y Ye, J Hao, Y Hou, Z Wang, S **ao, Y Luo, W Zeng - Visual Informatics, 2024 - Elsevier
Generative AI (GenAI) has witnessed remarkable progress in recent years and
demonstrated impressive performance in various generation tasks in different domains such …

Gpt-ner: Named entity recognition via large language models

S Wang, X Sun, X Li, R Ouyang, F Wu, T Zhang… - arxiv preprint arxiv …, 2023 - arxiv.org
Despite the fact that large-scale Language Models (LLM) have achieved SOTA
performances on a variety of NLP tasks, its performance on NER is still significantly below …

When do neural nets outperform boosted trees on tabular data?

D McElfresh, S Khandagale… - Advances in …, 2023 - proceedings.neurips.cc
Tabular data is one of the most commonly used types of data in machine learning. Despite
recent advances in neural nets (NNs) for tabular data, there is still an active discussion on …

Leveraging large language models for sequential recommendation

J Harte, W Zorgdrager, P Louridas… - Proceedings of the 17th …, 2023 - dl.acm.org
Sequential recommendation problems have received increasing attention in research during
the past few years, leading to the inception of a large variety of algorithmic approaches. In …

How can recommender systems benefit from large language models: A survey

J Lin, X Dai, Y **, W Liu, B Chen, H Zhang… - ACM Transactions on …, 2025 - dl.acm.org
With the rapid development of online services and web applications, recommender systems
(RS) have become increasingly indispensable for mitigating information overload and …

CancerGPT for few shot drug pair synergy prediction using large pretrained language models

T Li, S Shetty, A Kamath, A Jaiswal, X Jiang… - NPJ Digital …, 2024 - nature.com
Large language models (LLMs) have been shown to have significant potential in few-shot
learning across various fields, even with minimal training data. However, their ability to …

Llm processes: Numerical predictive distributions conditioned on natural language

J Requeima, J Bronskill, D Choi… - Advances in …, 2025 - proceedings.neurips.cc
Abstract Machine learning practitioners often face significant challenges in formally
integrating their prior knowledge and beliefs into predictive models, limiting the potential for …

Meta-in-context learning in large language models

J Coda-Forno, M Binz, Z Akata… - Advances in …, 2023 - proceedings.neurips.cc
Large language models have shown tremendous performance in a variety of tasks. In-
context learning--the ability to improve at a task after being provided with a number of …

Multimodal llms for health grounded in individual-specific data

A Belyaeva, J Cosentino, F Hormozdiari… - Workshop on Machine …, 2023 - Springer
Foundation large language models (LLMs) have shown an impressive ability to solve tasks
across a wide range of fields including health. To effectively solve personalized health tasks …