Scientific discovery in the age of artificial intelligence
Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment
and accelerate research, hel** scientists to generate hypotheses, design experiments …
and accelerate research, hel** scientists to generate hypotheses, design experiments …
A comprehensive survey on graph neural networks
Deep learning has revolutionized many machine learning tasks in recent years, ranging
from image classification and video processing to speech recognition and natural language …
from image classification and video processing to speech recognition and natural language …
[CITATION][C] An introduction to variational autoencoders
An Introduction to Variational Autoencoders Page 1 An Introduction to Variational Autoencoders
Page 2 Other titles in Foundations and Trends R in Machine Learning Computational Optimal …
Page 2 Other titles in Foundations and Trends R in Machine Learning Computational Optimal …
Recent advances and applications of deep learning methods in materials science
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
Machine learning methods for small data challenges in molecular science
B Dou, Z Zhu, E Merkurjev, L Ke, L Chen… - Chemical …, 2023 - ACS Publications
Small data are often used in scientific and engineering research due to the presence of
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …
Machine learning in drug discovery: a review
This review provides the feasible literature on drug discovery through ML tools and
techniques that are enforced in every phase of drug development to accelerate the research …
techniques that are enforced in every phase of drug development to accelerate the research …
Machine learning–enabled high-entropy alloy discovery
High-entropy alloys are solid solutions of multiple principal elements that are capable of
reaching composition and property regimes inaccessible for dilute materials. Discovering …
reaching composition and property regimes inaccessible for dilute materials. Discovering …
Machine learning for a sustainable energy future
Transitioning from fossil fuels to renewable energy sources is a critical global challenge; it
demands advances—at the materials, devices and systems levels—for the efficient …
demands advances—at the materials, devices and systems levels—for the efficient …
ChatGPT chemistry assistant for text mining and the prediction of MOF synthesis
We use prompt engineering to guide ChatGPT in the automation of text mining of metal–
organic framework (MOF) synthesis conditions from diverse formats and styles of the …
organic framework (MOF) synthesis conditions from diverse formats and styles of the …
Graph representation learning in biomedicine and healthcare
Networks—or graphs—are universal descriptors of systems of interacting elements. In
biomedicine and healthcare, they can represent, for example, molecular interactions …
biomedicine and healthcare, they can represent, for example, molecular interactions …