Counterfactual explanations and how to find them: literature review and benchmarking

R Guidotti - Data Mining and Knowledge Discovery, 2024 - Springer
Interpretable machine learning aims at unveiling the reasons behind predictions returned by
uninterpretable classifiers. One of the most valuable types of explanation consists of …

Explainability of artificial intelligence methods, applications and challenges: A comprehensive survey

W Ding, M Abdel-Basset, H Hawash, AM Ali - Information Sciences, 2022 - Elsevier
The continuous advancement of Artificial Intelligence (AI) has been revolutionizing the
strategy of decision-making in different life domains. Regardless of this achievement, AI …

Benchmarking and survey of explanation methods for black box models

F Bodria, F Giannotti, R Guidotti, F Naretto… - Data Mining and …, 2023 - Springer
The rise of sophisticated black-box machine learning models in Artificial Intelligence
systems has prompted the need for explanation methods that reveal how these models work …

Explainable AI for time series classification: a review, taxonomy and research directions

A Theissler, F Spinnato, U Schlegel, R Guidotti - Ieee Access, 2022 - ieeexplore.ieee.org
Time series data is increasingly used in a wide range of fields, and it is often relied on in
crucial applications and high-stakes decision-making. For instance, sensors generate time …

Instance-based counterfactual explanations for time series classification

E Delaney, D Greene, MT Keane - International conference on case …, 2021 - Springer
In recent years, there has been a rapidly expanding focus on explaining the predictions
made by black-box AI systems that handle image and tabular data. However, considerably …

Explainable AI for medical data: current methods, limitations, and future directions

MI Hossain, G Zamzmi, PR Mouton, MS Salekin… - ACM Computing …, 2025 - dl.acm.org
With the power of parallel processing, large datasets, and fast computational resources,
deep neural networks (DNNs) have outperformed highly trained and experienced human …

Encoding time-series explanations through self-supervised model behavior consistency

O Queen, T Hartvigsen, T Koker, H He… - Advances in …, 2023 - proceedings.neurips.cc
Interpreting time series models is uniquely challenging because it requires identifying both
the location of time series signals that drive model predictions and their matching to an …

Orchestrating explainable artificial intelligence for multimodal and longitudinal data in medical imaging

A Pahud de Mortanges, H Luo, SZ Shu, A Kamath… - NPJ digital …, 2024 - nature.com
Explainable artificial intelligence (XAI) has experienced a vast increase in recognition over
the last few years. While the technical developments are manifold, less focus has been …

[HTML][HTML] Explainable ai for time series via virtual inspection layers

J Vielhaben, S Lapuschkin, G Montavon, W Samek - Pattern Recognition, 2024 - Elsevier
The field of eXplainable Artificial Intelligence (XAI) has witnessed significant advancements
in recent years. However, the majority of progress has been concentrated in the domains of …

Fairness issues, current approaches, and challenges in machine learning models

TD Jui, P Rivas - International Journal of Machine Learning and …, 2024 - Springer
With the increasing influence of machine learning algorithms in decision-making processes,
concerns about fairness have gained significant attention. This area now offers significant …