Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors
QK Feng, SL Zhong, JY Pei, Y Zhao, DL Zhang… - Chemical …, 2021 - ACS Publications
With the development of advanced electronic devices and electric power systems, polymer-
based dielectric film capacitors with high energy storage capability have become particularly …
based dielectric film capacitors with high energy storage capability have become particularly …
Machine learning for molecular and materials science
Here we summarize recent progress in machine learning for the chemical sciences. We
outline machine-learning techniques that are suitable for addressing research questions in …
outline machine-learning techniques that are suitable for addressing research questions in …
A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics
We present the application of a class of deep learning, known as Physics Informed Neural
Networks (PINN), to inversion and surrogate modeling in solid mechanics. We explain how …
Networks (PINN), to inversion and surrogate modeling in solid mechanics. We explain how …
The materials science behind sustainable metals and alloys
D Raabe - Chemical reviews, 2023 - ACS Publications
Production of metals stands for 40% of all industrial greenhouse gas emissions, 10% of the
global energy consumption, 3.2 billion tonnes of minerals mined, and several billion tonnes …
global energy consumption, 3.2 billion tonnes of minerals mined, and several billion tonnes …
Machine learning in additive manufacturing: State-of-the-art and perspectives
Additive manufacturing (AM) has emerged as a disruptive digital manufacturing technology.
However, its broad adoption in industry is still hindered by high entry barriers of design for …
However, its broad adoption in industry is still hindered by high entry barriers of design for …
Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys
Inspired by the gradient structures of biological materials, researchers have explored
compositional and structural gradients for about 40 years as an approach to enhance the …
compositional and structural gradients for about 40 years as an approach to enhance the …
Graph networks as a universal machine learning framework for molecules and crystals
Graph networks are a new machine learning (ML) paradigm that supports both relational
reasoning and combinatorial generalization. Here, we develop universal MatErials Graph …
reasoning and combinatorial generalization. Here, we develop universal MatErials Graph …
Machine learning in materials informatics: recent applications and prospects
Propelled partly by the Materials Genome Initiative, and partly by the algorithmic
developments and the resounding successes of data-driven efforts in other domains …
developments and the resounding successes of data-driven efforts in other domains …
Concepts of artificial intelligence for computer-assisted drug discovery
X Yang, Y Wang, R Byrne, G Schneider… - Chemical …, 2019 - ACS Publications
Artificial intelligence (AI), and, in particular, deep learning as a subcategory of AI, provides
opportunities for the discovery and development of innovative drugs. Various machine …
opportunities for the discovery and development of innovative drugs. Various machine …
Towards explainable artificial intelligence
In recent years, machine learning (ML) has become a key enabling technology for the
sciences and industry. Especially through improvements in methodology, the availability of …
sciences and industry. Especially through improvements in methodology, the availability of …