Topological kagome magnets and superconductors
A kagome lattice naturally features Dirac fermions, flat bands and van Hove singularities in
its electronic structure. The Dirac fermions encode topology, flat bands favour correlated …
its electronic structure. The Dirac fermions encode topology, flat bands favour correlated …
Van der Waals heterostructures
The integration of dissimilar materials into heterostructures has become a powerful tool for
engineering interfaces and electronic structure. The advent of 2D materials has provided …
engineering interfaces and electronic structure. The advent of 2D materials has provided …
2D heterostructures for ubiquitous electronics and optoelectronics: principles, opportunities, and challenges
A grand family of two-dimensional (2D) materials and their heterostructures have been
discovered through the extensive experimental and theoretical efforts of chemists, material …
discovered through the extensive experimental and theoretical efforts of chemists, material …
The magnetic genome of two-dimensional van der Waals materials
Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as
one of the most promising areas in condensed matter research, with many exciting emerging …
one of the most promising areas in condensed matter research, with many exciting emerging …
Robust superconductivity in magic-angle multilayer graphene family
The discovery of correlated states and superconductivity in magic-angle twisted bilayer
graphene (MATBG) established a new platform to explore interaction-driven and topological …
graphene (MATBG) established a new platform to explore interaction-driven and topological …
Moiré photonics and optoelectronics
Moiré superlattices, the artificial quantum materials, have provided a wide range of
possibilities for the exploration of completely new physics and device architectures. In this …
possibilities for the exploration of completely new physics and device architectures. In this …
Colloquium: Quantum anomalous Hall effect
The quantum Hall (QH) effect, quantized Hall resistance combined with zero longitudinal
resistance, is the characteristic experimental fingerprint of Chern insulators—topologically …
resistance, is the characteristic experimental fingerprint of Chern insulators—topologically …
Fractional Chern Insulator in Twisted Bilayer
A recent experiment has reported the first observation of a zero-field fractional Chern
insulator (FCI) phase in twisted bilayer MoTe 2 moiré superlattices [J. Cai, Signatures of …
insulator (FCI) phase in twisted bilayer MoTe 2 moiré superlattices [J. Cai, Signatures of …
Semiconductor moiré materials
Moiré materials have emerged as a platform for exploring the physics of strong electronic
correlations and non-trivial band topology. Here we review the recent progress in …
correlations and non-trivial band topology. Here we review the recent progress in …
Emerging exciton physics in transition metal dichalcogenide heterobilayers
Atomically thin transition metal dichalcogenides (TMDs) are 2D semiconductors with tightly
bound excitons and correspondingly strong light–matter interactions. Owing to the weak van …
bound excitons and correspondingly strong light–matter interactions. Owing to the weak van …