First-principles phonon calculations with phonopy and phono3py

A Togo - Journal of the Physical Society of Japan, 2023 - journals.jps.jp
Harmonic, quasi-harmonic, and anharmonic phonon properties of crystals are getting to be
better predicted using first-principles phonon calculations by virtue of the progress of the …

Recent advances and applications of deep learning methods in materials science

K Choudhary, B DeCost, C Chen, A Jain… - npj Computational …, 2022 - nature.com
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …

Machine learning for high-entropy alloys: Progress, challenges and opportunities

X Liu, J Zhang, Z Pei - Progress in Materials Science, 2023 - Elsevier
High-entropy alloys (HEAs) have attracted extensive interest due to their exceptional
mechanical properties and the vast compositional space for new HEAs. However …

FAIR data enabling new horizons for materials research

M Scheffler, M Aeschlimann, M Albrecht, T Bereau… - Nature, 2022 - nature.com
The prosperity and lifestyle of our society are very much governed by achievements in
condensed matter physics, chemistry and materials science, because new products for …

Mattergen: a generative model for inorganic materials design

C Zeni, R Pinsler, D Zügner, A Fowler, M Horton… - ar** algorithmic approaches for the rational design and discovery of materials can
enable us to systematically find novel materials, which can have huge technological and …

The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design

K Choudhary, KF Garrity, ACE Reid, B DeCost… - npj computational …, 2020 - nature.com
Abstract The Joint Automated Repository for Various Integrated Simulations (JARVIS) is an
integrated infrastructure to accelerate materials discovery and design using density …

Human-and machine-centred designs of molecules and materials for sustainability and decarbonization

J Peng, D Schwalbe-Koda, K Akkiraju, T **e… - Nature Reviews …, 2022 - nature.com
Breakthroughs in molecular and materials discovery require meaningful outliers to be
identified in existing trends. As knowledge accumulates, the inherent bias of human intuition …

Machine learning for materials scientists: an introductory guide toward best practices

AYT Wang, RJ Murdock, SK Kauwe… - Chemistry of …, 2020 - ACS Publications
This Methods/Protocols article is intended for materials scientists interested in performing
machine learning-centered research. We cover broad guidelines and best practices …

Electronic-structure methods for materials design

N Marzari, A Ferretti, C Wolverton - Nature materials, 2021 - nature.com
The accuracy and efficiency of electronic-structure methods to understand, predict and
design the properties of materials has driven a new paradigm in research. Simulations can …