A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection

M **, HY Koh, Q Wen, D Zambon… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Time series are the primary data type used to record dynamic system measurements and
generated in great volume by both physical sensors and online processes (virtual sensors) …

A comprehensive survey on deep graph representation learning

W Ju, Z Fang, Y Gu, Z Liu, Q Long, Z Qiao, Y Qin… - Neural Networks, 2024 - Elsevier
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …

Pdformer: Propagation delay-aware dynamic long-range transformer for traffic flow prediction

J Jiang, C Han, WX Zhao, J Wang - … of the AAAI conference on artificial …, 2023 - ojs.aaai.org
As a core technology of Intelligent Transportation System, traffic flow prediction has a wide
range of applications. The fundamental challenge in traffic flow prediction is to effectively …

Dstagnn: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting

S Lan, Y Ma, W Huang, W Wang… - … on machine learning, 2022 - proceedings.mlr.press
As a typical problem in time series analysis, traffic flow prediction is one of the most
important application fields of machine learning. However, achieving highly accurate traffic …

Largest: A benchmark dataset for large-scale traffic forecasting

X Liu, Y **a, Y Liang, J Hu, Y Wang… - Advances in …, 2023 - proceedings.neurips.cc
Road traffic forecasting plays a critical role in smart city initiatives and has experienced
significant advancements thanks to the power of deep learning in capturing non-linear …

Frequency-domain MLPs are more effective learners in time series forecasting

K Yi, Q Zhang, W Fan, S Wang… - Advances in …, 2024 - proceedings.neurips.cc
Time series forecasting has played the key role in different industrial, including finance,
traffic, energy, and healthcare domains. While existing literatures have designed many …

Graph neural network for traffic forecasting: A survey

W Jiang, J Luo - Expert systems with applications, 2022 - Elsevier
Traffic forecasting is important for the success of intelligent transportation systems. Deep
learning models, including convolution neural networks and recurrent neural networks, have …

Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting

Z Shao, Z Zhang, F Wang, Y Xu - Proceedings of the 28th ACM SIGKDD …, 2022 - dl.acm.org
Multivariate Time Series (MTS) forecasting plays a vital role in a wide range of applications.
Recently, Spatial-Temporal Graph Neural Networks (STGNNs) have become increasingly …

Graph neural controlled differential equations for traffic forecasting

J Choi, H Choi, J Hwang, N Park - … of the AAAI conference on artificial …, 2022 - ojs.aaai.org
Traffic forecasting is one of the most popular spatio-temporal tasks in the field of machine
learning. A prevalent approach in the field is to combine graph convolutional networks and …

Dynamic graph convolutional recurrent network for traffic prediction: Benchmark and solution

F Li, J Feng, H Yan, G **, F Yang, F Sun… - ACM Transactions on …, 2023 - dl.acm.org
Traffic prediction is the cornerstone of intelligent transportation system. Accurate traffic
forecasting is essential for the applications of smart cities, ie, intelligent traffic management …