A concise review of Rydberg atom based quantum computation and quantum simulation
Quantum information processing based on Rydberg atoms emerged as a promising
direction two decades ago. Recent experimental and theoretical progresses have shined …
direction two decades ago. Recent experimental and theoretical progresses have shined …
Noisy intermediate-scale quantum computers
Quantum computers have made extraordinary progress over the past decade, and
significant milestones have been achieved along the path of pursuing universal fault-tolerant …
significant milestones have been achieved along the path of pursuing universal fault-tolerant …
Strong quantum computational advantage using a superconducting quantum processor
Y Wu, WS Bao, S Cao, F Chen, MC Chen, X Chen… - Physical review …, 2021 - APS
Scaling up to a large number of qubits with high-precision control is essential in the
demonstrations of quantum computational advantage to exponentially outpace the classical …
demonstrations of quantum computational advantage to exponentially outpace the classical …
Realization of an error-correcting surface code with superconducting qubits
Quantum error correction is a critical technique for transitioning from noisy intermediate-
scale quantum devices to fully fledged quantum computers. The surface code, which has a …
scale quantum devices to fully fledged quantum computers. The surface code, which has a …
Quantum computational advantage via 60-qubit 24-cycle random circuit sampling
To ensure a long-term quantum computational advantage, the quantum hardware should be
upgraded to withstand the competition of continuously improved classical algorithms and …
upgraded to withstand the competition of continuously improved classical algorithms and …
Quantum Simulation of SU(3) Lattice Yang-Mills Theory at Leading Order in Large- Expansion
AN Ciavarella, CW Bauer - Physical Review Letters, 2024 - APS
Quantum simulations of the dynamics of QCD have been limited by the complexities of
map** the continuous gauge fields onto quantum computers. By parametrizing the gauge …
map** the continuous gauge fields onto quantum computers. By parametrizing the gauge …
Experimental quantum generative adversarial networks for image generation
Quantum machine learning is expected to be one of the first practical applications of near-
term quantum devices. Pioneer theoretical works suggest that quantum generative …
term quantum devices. Pioneer theoretical works suggest that quantum generative …
Near-term quantum computing techniques: Variational quantum algorithms, error mitigation, circuit compilation, benchmarking and classical simulation
Quantum computing is a game-changing technology for global academia, research centers
and industries including computational science, mathematics, finance, pharmaceutical …
and industries including computational science, mathematics, finance, pharmaceutical …
Hybrid quantum-classical convolutional neural networks
Deep learning has been shown to be able to recognize data patterns better than humans in
specific circumstances or contexts. In parallel, quantum computing has demonstrated to be …
specific circumstances or contexts. In parallel, quantum computing has demonstrated to be …
Native qudit entanglement in a trapped ion quantum processor
Quantum information carriers, just like most physical systems, naturally occupy high-
dimensional Hilbert spaces. Instead of restricting them to a two-level subspace, these high …
dimensional Hilbert spaces. Instead of restricting them to a two-level subspace, these high …