Machine learning for a sustainable energy future
Transitioning from fossil fuels to renewable energy sources is a critical global challenge; it
demands advances—at the materials, devices and systems levels—for the efficient …
demands advances—at the materials, devices and systems levels—for the efficient …
Recent advances and applications of deep learning methods in materials science
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics
As materials researchers increasingly embrace machine-learning (ML) methods, it is natural
to wonder what lessons can be learned from other fields undergoing similar developments …
to wonder what lessons can be learned from other fields undergoing similar developments …
Extracting accurate materials data from research papers with conversational language models and prompt engineering
There has been a growing effort to replace manual extraction of data from research papers
with automated data extraction based on natural language processing, language models …
with automated data extraction based on natural language processing, language models …
Artificial intelligence and machine learning in design of mechanical materials
Artificial intelligence, especially machine learning (ML) and deep learning (DL) algorithms,
is becoming an important tool in the fields of materials and mechanical engineering …
is becoming an important tool in the fields of materials and mechanical engineering …
Artificial intelligence-powered electronic skin
Skin-interfaced electronics is gradually changing medical practices by enabling continuous
and non-invasive tracking of physiological and biochemical information. With the rise of big …
and non-invasive tracking of physiological and biochemical information. With the rise of big …
Emerging materials intelligence ecosystems propelled by machine learning
The age of cognitive computing and artificial intelligence (AI) is just dawning. Inspired by its
successes and promises, several AI ecosystems are blossoming, many of them within the …
successes and promises, several AI ecosystems are blossoming, many of them within the …
Data-driven materials research enabled by natural language processing and information extraction
Given the emergence of data science and machine learning throughout all aspects of
society, but particularly in the scientific domain, there is increased importance placed on …
society, but particularly in the scientific domain, there is increased importance placed on …
Quantifying the advantage of domain-specific pre-training on named entity recognition tasks in materials science
A bottleneck in efficiently connecting new materials discoveries to established literature has
arisen due to an increase in publications. This problem may be addressed by using named …
arisen due to an increase in publications. This problem may be addressed by using named …
A universal system for digitization and automatic execution of the chemical synthesis literature
Robotic systems for chemical synthesis are growing in popularity but can be difficult to run
and maintain because of the lack of a standard operating system or capacity for direct …
and maintain because of the lack of a standard operating system or capacity for direct …