Large language models on graphs: A comprehensive survey
Large language models (LLMs), such as GPT4 and LLaMA, are creating significant
advancements in natural language processing, due to their strong text encoding/decoding …
advancements in natural language processing, due to their strong text encoding/decoding …
Ai alignment: A comprehensive survey
AI alignment aims to make AI systems behave in line with human intentions and values. As
AI systems grow more capable, the potential large-scale risks associated with misaligned AI …
AI systems grow more capable, the potential large-scale risks associated with misaligned AI …
Open problems and fundamental limitations of reinforcement learning from human feedback
Reinforcement learning from human feedback (RLHF) is a technique for training AI systems
to align with human goals. RLHF has emerged as the central method used to finetune state …
to align with human goals. RLHF has emerged as the central method used to finetune state …
Do the rewards justify the means? measuring trade-offs between rewards and ethical behavior in the machiavelli benchmark
Artificial agents have traditionally been trained to maximize reward, which may incentivize
power-seeking and deception, analogous to how next-token prediction in language models …
power-seeking and deception, analogous to how next-token prediction in language models …
The curse of recursion: Training on generated data makes models forget
Stable Diffusion revolutionised image creation from descriptive text. GPT-2, GPT-3 (. 5) and
GPT-4 demonstrated astonishing performance across a variety of language tasks. ChatGPT …
GPT-4 demonstrated astonishing performance across a variety of language tasks. ChatGPT …
Efficient large language models: A survey
Large Language Models (LLMs) have demonstrated remarkable capabilities in important
tasks such as natural language understanding and language generation, and thus have the …
tasks such as natural language understanding and language generation, and thus have the …
Curriculum learning for reinforcement learning domains: A framework and survey
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks
in which the agent has only limited environmental feedback. Despite many advances over …
in which the agent has only limited environmental feedback. Despite many advances over …
Reinforcement learning in healthcare: A survey
As a subfield of machine learning, reinforcement learning (RL) aims at optimizing decision
making by using interaction samples of an agent with its environment and the potentially …
making by using interaction samples of an agent with its environment and the potentially …
Generative artificial intelligence
Recent developments in the field of artificial intelligence (AI) have enabled new paradigms
of machine processing, shifting from data-driven, discriminative AI tasks toward …
of machine processing, shifting from data-driven, discriminative AI tasks toward …
In situ bidirectional human-robot value alignment
A prerequisite for social coordination is bidirectional communication between teammates,
each playing two roles simultaneously: as receptive listeners and expressive speakers. For …
each playing two roles simultaneously: as receptive listeners and expressive speakers. For …