Backpropagation-based learning techniques for deep spiking neural networks: A survey
M Dampfhoffer, T Mesquida… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
With the adoption of smart systems, artificial neural networks (ANNs) have become
ubiquitous. Conventional ANN implementations have high energy consumption, limiting …
ubiquitous. Conventional ANN implementations have high energy consumption, limiting …
Direct learning-based deep spiking neural networks: a review
The spiking neural network (SNN), as a promising brain-inspired computational model with
binary spike information transmission mechanism, rich spatially-temporal dynamics, and …
binary spike information transmission mechanism, rich spatially-temporal dynamics, and …
Spike-driven transformer
Abstract Spiking Neural Networks (SNNs) provide an energy-efficient deep learning option
due to their unique spike-based event-driven (ie, spike-driven) paradigm. In this paper, we …
due to their unique spike-based event-driven (ie, spike-driven) paradigm. In this paper, we …
Deep residual learning in spiking neural networks
Abstract Deep Spiking Neural Networks (SNNs) present optimization difficulties for gradient-
based approaches due to discrete binary activation and complex spatial-temporal dynamics …
based approaches due to discrete binary activation and complex spatial-temporal dynamics …
Spikformer: When spiking neural network meets transformer
We consider two biologically plausible structures, the Spiking Neural Network (SNN) and the
self-attention mechanism. The former offers an energy-efficient and event-driven paradigm …
self-attention mechanism. The former offers an energy-efficient and event-driven paradigm …
Training high-performance low-latency spiking neural networks by differentiation on spike representation
Abstract Spiking Neural Network (SNN) is a promising energy-efficient AI model when
implemented on neuromorphic hardware. However, it is a challenge to efficiently train SNNs …
implemented on neuromorphic hardware. However, it is a challenge to efficiently train SNNs …
Attention spiking neural networks
Brain-inspired spiking neural networks (SNNs) are becoming a promising energy-efficient
alternative to traditional artificial neural networks (ANNs). However, the performance gap …
alternative to traditional artificial neural networks (ANNs). However, the performance gap …
Temporal effective batch normalization in spiking neural networks
Abstract Spiking Neural Networks (SNNs) are promising in neuromorphic hardware owing to
utilizing spatio-temporal information and sparse event-driven signal processing. However, it …
utilizing spatio-temporal information and sparse event-driven signal processing. However, it …
Membrane potential batch normalization for spiking neural networks
Y Guo, Y Zhang, Y Chen, W Peng… - Proceedings of the …, 2023 - openaccess.thecvf.com
As one of the energy-efficient alternatives of conventional neural networks (CNNs), spiking
neural networks (SNNs) have gained more and more interest recently. To train the deep …
neural networks (SNNs) have gained more and more interest recently. To train the deep …
Glif: A unified gated leaky integrate-and-fire neuron for spiking neural networks
X Yao, F Li, Z Mo, J Cheng - Advances in Neural …, 2022 - proceedings.neurips.cc
Abstract Spiking Neural Networks (SNNs) have been studied over decades to incorporate
their biological plausibility and leverage their promising energy efficiency. Throughout …
their biological plausibility and leverage their promising energy efficiency. Throughout …